Mostrando 10 resultados de: 17
Filtros aplicados
Subtipo de publicación
Article(17)
Publisher
Publications de l'Institut Mathematique(3)
Journal of Multivariate Analysis(2)
Lithuanian Mathematical Journal(2)
Statistics and Probability Letters(2)
Advances in Applied Probability(1)
Área temáticas
Principios generales de matemáticas(10)
Probabilidades y matemática aplicada(10)
Álgebra(4)
Análisis(3)
Matemáticas(3)
Área de conocimiento
Optimización matemática(10)
Probabilidad(8)
Análisis asintótico(1)
Estadísticas(1)
Matemáticas aplicadas(1)
Objetivos de Desarrollo Sostenible
ODS 9: Industria, innovación e infraestructura(15)
ODS 17: Alianzas para lograr los objetivos(14)
ODS 8: Trabajo decente y crecimiento económico(11)
ODS 4: Educación de calidad(4)
ODS 12: Producción y consumo responsables(1)
Origen
scopus(17)
A New Test for Convergence of Positive Series
ArticleAbstract: The paper provides a new test of convergence and divergence of positive series. In particular, it exPalabras claves:convergence/ divergence test, Karamata’s theorem, Partial Order, positive series, Rate of convergence, Regular variationAutores:Abramov V., Edward A.M. Omey, Meitner CadenaFuentes:scopusApproximations in bivariate renewal theory
ArticleAbstract: We construct approximations to the renewal function for a bivariate renewal process. Suppose (X, Y )Palabras claves:Approximation, Asymptotic distribution, Bivariate renewal process, Equilibrium distribution, Regular variation, Renewal functionAutores:Edward A.M. Omey, Mitov K.V., Vesilo R.Fuentes:scopusDomains of attraction of the random vector (X, X2) and applications
ArticleAbstract: Many statistics are based on functions of sample moments. Important examples are the sample variancePalabras claves:Domains of attraction, Non-central t-statistic, Regular variation, Sample coefficient of variation, Sample dispersionAutores:Edward A.M. OmeyFuentes:scopusIntuitive approximations for the renewal function
ArticleAbstract: It is hard to find explicit expressions for the renewal function U(x)=∑n=0∞F*n(x). Many researchersPalabras claves:Approximations, Regular variation, Renewal function, The class gammaAutores:Edward A.M. Omey, Mitov K.V.Fuentes:scopusIntuitive approximations in discrete renewal theory, Part 1: Regularly varying case
ArticleAbstract: It is usually impossible to find explicit expressions for the renewal sequence. This paper presentsPalabras claves:Approximations, Regular variation, Renewal sequenceAutores:Edward A.M. Omey, Van Gulck S.Fuentes:scopusThe difference between the product and the convolution product of distribution functions in R <inf>n</inf>
ArticleAbstract: Assume that X and Y are independent, nonnegative d-dimensional random vectors with distribution funcPalabras claves:O-regularly varying functions, Regular variation, Subexponential distribution, Sums of random vectorsAutores:Edward A.M. Omey, Vesilo R.Fuentes:scopusMultivariate subexponential distributions and random sums of random vectors
ArticleAbstract: Let F(x) denote a distribution function in ℝd and let F*n(x) denote the nth convolution power of F(xPalabras claves:Random sum, Regular variation, Subexponential distributionAutores:Edward A.M. Omey, Mallor F., Santos J.Fuentes:scopusMultivariate weighted renewal functions
ArticleAbstract: Let (X, Y), (X1, Y1), (X2, Y2), ... denote independent positive random vectors with common distributPalabras claves:Random vector, Regular variation, Renewal theory, Weighted renewal functionAutores:Edward A.M. Omey, Mallor F., Santos J.Fuentes:scopusSecond order behaviour of the tail of a subordinated probability distribution
ArticleAbstract: Let G = Σ∞n=0pnF*n denote the probability measure subordinate to F with subordinator {Pn}N. We invesPalabras claves:infinite divisibility, Regular variation, SubordinationAutores:Edward A.M. Omey, Willekens E.Fuentes:scopusSecond-order renewal theorem in the finite-means case
ArticleAbstract: Let F be a distribution function (d.f.) on (0, ∞) and let U be the renewal function associated withPalabras claves:O-regular variation, Regular variation, Renewal function, Subexponential distributionsAutores:Baltrūnas A., Edward A.M. OmeyFuentes:scopus