Mostrando 5 resultados de: 5
Filtros aplicados
Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management
ArticleAbstract: The natural background level (NBL) concept is revisited and combined with indicator kriging method tPalabras claves:Groundwater contamination, Indicator kriging, Natural background level, Probability mapsAutores:de Melo M.T.C., Ducci D., Luís Ribeiro, Parrone D., Preziosi E., Sellerino M.Fuentes:scopusAssessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method
ArticleAbstract: The Guayas region in Ecuador is economically very important, producing 68% of the national crops. ThPalabras claves:Agriculture, contamination, Land use, Net recharge, Vulnerability indexAutores:Juan Carlos Pindo, Luis Elvin Domínguez-Granda, Luís RibeiroFuentes:googlescopusCurrent uses of ground penetrating radar in groundwater-dependent ecosystems research
ReviewAbstract: Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater proPalabras claves:Ground penetrating radar, Groundwater-dependent ecosystems, HydrogeologyAutores:Carvalho J.M., Francisco Javier Alcalá, Luís Ribeiro, Paz M.C.Fuentes:scopusNitrate probability mapping in the northern aquifer alluvial system of the river Tagus (Portugal) using Disjunctive Kriging
ArticleAbstract: The Water Framework Directive and its daughter directives recognize the urgent need to adopt specifiPalabras claves:Disjunctive Kriging, Groundwater, Nitrates, Probability mapsAutores:Luís Ribeiro, Mendes M.P.Fuentes:scopusPbkp_redictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
ArticleAbstract: Watershed management decisions need robust methods, which allow an accurate pbkp_redictive modelingPalabras claves:Groundwater, Machine learning techniques, Nitrates, random forest, vulnerability assessmentAutores:Chica-Olmo M., Garcia-Soldado M.J., Luís Ribeiro, Mendes M.P., Rodriguez-Galiano V.Fuentes:scopus