Mostrando 10 resultados de: 24
Filtros aplicados
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(6)
Proceedings of the International Conference on Document Analysis and Recognition, ICDAR(4)
Pattern Recognition(2)
Pattern Recognition Letters(2)
ICMR 2019 - Proceedings of the 2019 ACM International Conference on Multimedia Retrieval(1)
Área temáticas
Métodos informáticos especiales(17)
Funcionamiento de bibliotecas y archivos(7)
Imprenta y actividades conexas(5)
Programación informática, programas, datos, seguridad(4)
Biblioteconomía y Documentación informatica(3)
Origen
scopus(24)
A Fine-Grained Approach to Scene Text Script Identification
Conference ObjectAbstract: This paper focuses on the problem of script identification in unconstrained scenarios. Script identiPalabras claves:fine-grained recognition, Scene text, script identificationAutores:Karatzas D., Lluís Álvarez GómezFuentes:scopusA Generic Image Retrieval Method for Date Estimation of Historical Document Collections
Conference ObjectAbstract: Date estimation of historical document images is a challenging problem, with several contributions iPalabras claves:Date estimation, Document retrieval, Image retrieval, Ranking loss, Smooth-nDCGAutores:Llados J., Lluís Álvarez Gómez, Molina A., Ramos-Terrades O.Fuentes:scopusA fast hierarchical method for multi-script and arbitrary oriented scene text extraction
ArticleAbstract: Typography and layout lead to the hierarchical organization of text in words, text lines, paragraphsPalabras claves:detection, Hierarchical grouping, Perceptual organization, Scene text, segmentationAutores:Karatzas D., Lluís Álvarez GómezFuentes:scopusCutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters
Conference ObjectAbstract: In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architPalabras claves:cnn, End-to-end Systems, Robust reading, Utility MetersAutores:Karatzas D., Lluís Álvarez Gómez, Rusiñol M.Fuentes:scopusDate Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach
Conference ObjectAbstract: This paper presents a novel method for date estimation of historical photographs from archival sourcPalabras claves:Date estimation, Historical photographs, Image retrieval, Ranking loss, Smooth-nDCGAutores:Llados J., Lluís Álvarez Gómez, Molina A., Ramos-Terrades O., Riba P.Fuentes:scopusFAST: Facilitated and Accurate Scene Text Proposals through FCN Guided Pruning
ArticleAbstract: Class-specific text proposal algorithms can efficiently reduce the search space for possible text obPalabras claves:Fully convolutional networks, Scene text images, Text proposalsAutores:Bagdanov A.D., Bazazian D., Gómez R., Karatzas D., Lluís Álvarez Gómez, Nicolaou A.Fuentes:scopusFine-grained image classification and retrieval by combining visual and locally pooled textual features
Conference ObjectAbstract: Text contained in an image carries high-level semantics that can be exploited to achieve richer imagPalabras claves:Autores:Dey S., Furkan Biten A., Karatzas D., Lluís Álvarez Gómez, Mafla A.Fuentes:scopusDynamic lexicon generation for natural scene images
Conference ObjectAbstract: Many scene text understanding methods approach the endto-end recognition problem from a word-spottinPalabras claves:cnn, Lexicon generation, Photo OCR, Scene text, Scene understanding, Topic modelingAutores:Karatzas D., Lluís Álvarez Gómez, Patel Y., Rusiñol M.Fuentes:scopusMulti-script text extraction from natural scenes
Conference ObjectAbstract: Scene text extraction methodologies are usually based in classification of individual regions or patPalabras claves:Localisation, Perceptual grouping, Scene text, segmentationAutores:Karatzas D., Lluís Álvarez GómezFuentes:scopusMultimodal grid features and cell pointers for scene text visual question answering
ArticleAbstract: This paper presents a new model for the task of scene text visual question answering. In this task qPalabras claves:41A05, 41A10, 65D05, 65D17, deep learning, MSC, Multi-modal learning, Scene text, Visual question answeringAutores:Furkan Biten A., Karatzas D., Lluís Álvarez Gómez, Mafla A., Rusiñol M., Tito R., Valveny E.Fuentes:scopus