Mostrando 8 resultados de: 8
Filtros aplicados
Publisher
Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017(3)
9th International Conference on Management of Digital EcoSystems, MEDES 2017(1)
Applied Soft Computing Journal(1)
Expert Systems with Applications(1)
Knowledge-Based Systems(1)
Área temáticas
Física aplicada(5)
Métodos informáticos especiales(3)
Ciencias de la computación(2)
Otras ramas de la ingeniería(1)
Sistemas(1)
Área de conocimiento
Aprendizaje automático(6)
Algoritmo(2)
Ciencias de la computación(2)
Ingeniería mecánica(1)
Inteligencia artificial(1)
Framework for discovering unknown abnormal condition patterns in gearboxes using a semi-supervised approach
Conference ObjectAbstract: Fault diagnosis plays a crucial role to maintain healthy conditions in rotating machinery. This papePalabras claves:Fault Detection, Fault diagnosis, gearboxes, Knowledge Discovery, semi-supervised learningAutores:Fannia Pacheco, Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:scopusA Bayesian approach to consequent parameter estimation in probabilistic fuzzy systems and its application to bearing fault classification
ArticleAbstract: A bearing is an essential component in rotating machinery, one of its principal cause of failure, anPalabras claves:Bearing, Clustering, fault classification, Probabilistic Fuzzy systems, vibration analysisAutores:Delgado M., Diego Cabrera Mendieta, Diego R. Cabrera, Fannia Pacheco, Jose Valante De Oliveira, Ledo L., Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:googlescopusAn autonomic traffic analysis proposal using Machine Learning techniques
Conference ObjectAbstract: Network analysis has recently become in one of the most challenging tasks to handle due to the rapidPalabras claves:Autonomic computing, Machine learning, Quality of service, Traffic analysisAutores:Budoin C., Exposito E., Fannia Pacheco, Gineste M.Fuentes:scopusAttribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery
ArticleAbstract: Features extracted from real world applications increase dramatically, while machine learning methodPalabras claves:Attribute clustering, Fault severity classification, feature selection, Rotating machinery, Rough setAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Fannia Pacheco, Jose Valante De Oliveira, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:googlescopusAutomatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation
ArticleAbstract: Signals captured in rotating machines to obtain the status of their components can be considered asPalabras claves:Auto-encoder, Convolution, deep learning, Helical gearbox, Wavelet packetsAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Fannia Pacheco, Fernando Sancho-Caparrini, Jose Valante De Oliveira, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:googlescopusSome preliminary results on the comparison of fcm, gk, fcmfp and fn-dbscan for bearing fault diagnosis
Conference ObjectAbstract: Bearings are one of the most omnipresent and vulnerable components in rotary machinery such as motorPalabras claves:Bearing, fault classification, Fault Detection, Fault diagnosis, Fcm, FCMFP, Fn-dbscan, Fuzzy Clustering, fuzzy rules, Gustafson-Kessel clusteringAutores:Diego R. Cabrera, Fannia Pacheco, Li C., Mariela Cerrada Lozada, Oliveira J.V.D., René-Vinicio Sánchez Loja, Ulutagay G.Fuentes:scopusMulti-fault diagnosis of rotating machinery by using feature ranking methods and SVM-based classifiers
Conference ObjectAbstract: Rotating machinery plays an important role in industries for motion transmission in machines; the brPalabras claves:Feature ranking, Helical gearbox, Multi-fault diagnosisAutores:Fannia Pacheco, Jean Carlo Macancela Poveda, Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez Loja, Vásquez R.E.Fuentes:googlescopusSOA Based Integrated Software to Develop Fault Diagnosis Models Using Machine Learning in Rotating Machinery
Conference ObjectAbstract: Fault detection and diagnostic software (FDDS) supports technicians and engineers to deal with operaPalabras claves:e-Maintenance, Fault diagnosis, Industrial supervision, Machine learning, Rotating machinery, SOAAutores:Diego R. Cabrera, Fannia Pacheco, Jean Carlo Macancela Poveda, Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez LojaFuentes:googlescopus