Mostrando 6 resultados de: 6
Filtros aplicados
Publisher
2016 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2016 - Proceedings(1)
2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018(1)
Advances in Intelligent Systems and Computing(1)
IEEE Transactions on Neural Networks and Learning Systems(1)
Integrated Computer-Aided Engineering(1)
Área temáticas
Ciencias de la computación(3)
Física aplicada(2)
Métodos informáticos especiales(2)
Fisiología humana(1)
Inglés e inglés antiguo (anglosajón)(1)
Área de conocimiento
Ciencias de la computación(4)
Red neuronal artificial(3)
Algoritmo(1)
Aprendizaje automático(1)
Arquitectura de computadoras(1)
Origen
scopus(6)
Deep neural network architecture implementation on FPGAs using a layer multiplexing scheme
Conference ObjectAbstract: In recent years pbkp_redictive models based on Deep Learning strategies have achieved enormous succePalabras claves:Deep Neural Networks, Fpga, Hardware implementation, Layer multiplexing, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Gómez I., Jerez-Aragonés J.M.Fuentes:scopusEfficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers
ArticleAbstract: The well-known backpropagation learning algorithm is implemented in a field-programmable gate arrayPalabras claves:Embedded Systems, field-programmable gate array (FPGA), Hardware implementation, Microcontrollers, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Luque-Baena R.M., Urda D.Fuentes:scopusPiecewise Polynomial Activation Functions for Feedforward Neural Networks
ArticleAbstract: Since the origins of artificial neural network research, many models of feedforward networks have bePalabras claves:Activation functions, classification, Feedforward neural networks, regression, Supervised learningAutores:Domínguez E., Francisco Ortega-Zamorano, López-Rubio E., Muñoz-Pérez J.Fuentes:scopusLayer multiplexing FPGA implementation for deep back-propagation learning
ArticleAbstract: Training of large scale neural networks, like those used nowadays in Deep Learning schemes, requiresPalabras claves:Deep Neural Networks, Fpga, Hardware implementation, Layer multiplexing, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Gómez I., Jerez-Aragonés J.M.Fuentes:scopusSuccessive Adaptive Linear Neural Modeling for Equidistant Real Roots Finding
Conference ObjectAbstract: The main objective of this work has been to implement a model to find equidistant real roots using aPalabras claves:Polynomial roots, SOM, Supervised learningAutores:Fernando P. Zhapa, Francisco Ortega-Zamorano, Joseph R. Gonzalez, Oscar V. GuarnizoFuentes:scopusThermal comfort estimation using a neurocomputational model
Conference ObjectAbstract: Thermal comfort conditions are important for the normal development of human tasks, and as such theyPalabras claves:Constructive Neural Networks, Supervised learning, THERMAL COMFORTAutores:Francisco Ortega-Zamorano, Franco L., Ghoreishi K., Jerez-Aragonés J.M., Rodríguez-Alabarce J.Fuentes:scopus