Mostrando 10 resultados de: 10
Subtipo de publicación
Article(10)
Publisher
AIMS Mathematics(4)
Symmetry(3)
Entropy(1)
Mathematical Problems in Engineering(1)
Open Mathematics(1)
Generalizations of fractional hermite-hadamard-mercer like inequalities for convex functions
ArticleAbstract: In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions bPalabras claves:Convex functions, Fractional integrals, Hermite-hadamard inequality, Hermite-Hadamard-Mercer inequality, Hölder inequality, Jensen-mercer inequalityAutores:Ali M.A., Budak H., Kashuri A., Miguel Vivas-CortezFuentes:googlescopusGeneralized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
ArticleAbstract: In this article, we introduce the notions of generalized fractional integrals for the interval-valuePalabras claves:co-ordinated convex, fractional integral, H-H inclusion, integral inclusions, IVFsAutores:Ali M.A., Budak H., Chasreechai S., Kara H., Miguel Vivas-CortezFuentes:googlescopusNew ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula
ArticleAbstract: In this paper we establish new Ostrowski type inequalities related to the notion s-ϕ-convex functionPalabras claves:Ostrowski inequality, S-convex function, S-ϕ -convex function b, S-ϕ-convex function, ϕ-convex functionAutores:Agarwal P., Ali M.A., Miguel Vivas-Cortez, Yenny Rangel-OliverosFuentes:googlescopusHermite-Hadamard and Ostrowski type inequalities in h-calculus with applications
ArticleAbstract: In this paper, we prove Hermite-Hadamard inequality for convex functions in the framework of h-calcuPalabras claves:Convex functions, H-integral, Hermite-hadamard inequality, Ostrowski inequality, Quantum calculusAutores:Ali M.A., Miguel Vivas-Cortez, Murtaza G., Sial I.B.Fuentes:googlescopusOn Generalization of Different Integral Inequalities for Harmonically Convex Functions
ArticleAbstract: In this study, we first prove a parameterized integral identity involving differentiable functions.Palabras claves:Harmonically convex functions, Midpoint and trapezoidal inequality, Simpson’s inequalityAutores:Ali M.A., Miguel Vivas-Cortez, Reunsumrit J., Sitthiwirattham T.Fuentes:googlescopusOn some new simpson’s formula type inequalities for convex functions in post-quantum calculus
ArticleAbstract: In this work, we prove a new (p, q)-integral identity involving a (p, q)-derivative and (p, q)-integPalabras claves:Convex functions, Post-quantum calculus, Simpson’s inequalitiesAutores:Ali M.A., Jansem S., Mateen A., Miguel Vivas-Cortez, Qaisar S., Sial I.B.Fuentes:googlescopusPost-quantum Ostrowski type integral inequalities for functions of two variables
ArticleAbstract: In this study, we give the notions about some new post-quantum partial derivatives and then use thesPalabras claves:(p, q)-integrals, Co-ordinated convex function, Ostrowski inequality, Post-quantum calculusAutores:Ali M.A., Budak H., Miguel Vivas-Cortez, Sial I.B.Fuentes:googlescopusSome Parameterized Quantum Simpson's and Quantum Newton's Integral Inequalities via Quantum Differentiable Convex Mappings
ArticleAbstract: In this work, two generalized quantum integral identities are proved by using some parameters. By utPalabras claves:Autores:Ali M.A., Budak H., Miguel Vivas-Cortez, Qaisar S., You X.X.Fuentes:googlescopusSome new hermite–hadamard and related inequalities for convex functions via (P, q)-integral
ArticleAbstract: In this investigation, for convex functions, some new (p, q)–Hermite–Hadamard-type inequalities usinPalabras claves:(p, q) estimates for midpoint and trapezoidal type inequalities, Post-quantum calculus, Quantum calculusAutores:Agarwal P., Ali M.A., Budak H., Kalsoom H., Miguel Vivas-CortezFuentes:googlescopusSome new newton's type integral inequalities for co-ordinated convex functions in quantum calculus
ArticleAbstract: Some recent results have been found treating the famous Simpson's rule in connection with the convexPalabras claves:Co-ordinated convexity, Newton's inequality, q1q2-derivatives, q1q2-integral, QuantumcalculusAutores:Ali M.A., Kashuri A., Miguel Vivas-Cortez, Sial I.B., Zhang Z.Fuentes:googlescopus