Mostrando 9 resultados de: 9
Filtros aplicados
Publisher
International Conference on ICT Convergence(2)
Electronics (Switzerland)(1)
ICT Express(1)
IEEE Access(1)
IEEE Transactions on Broadcasting(1)
Área temáticas
Métodos informáticos especiales(3)
Otras ramas de la ingeniería(2)
Ciencias de la computación(1)
Comunicaciones(1)
Educación superior(1)
Área de conocimiento
Aprendizaje automático(3)
Red inalámbrica(3)
Ciencias de la computación(2)
Comunicación(2)
Energía(2)
Origen
scopus(9)
Cluster-Head Selection for Energy-Harvesting IoT Devices in Multi-tier 5G Cellular Networks
Conference ObjectAbstract: Fifth-generation cellular networks promise to interconnect a wide variety of wireless devices, suchPalabras claves:5g networks, internet of things, LEACH, Multilayer Perceptron, Network lifetimeAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusDeep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access
ArticleAbstract: In this article, we consider a multi-user multiple-input single-output underlay cognitive radio systPalabras claves:Cognitive Radio Network, deep learning, Rate-splitting (RS), semidefinite relaxation (SDR), Simultaneous wireless information and power transfer (SWIPT)Autores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusMachine learning-based Scheme for Fault Detection for Turbine Engine Disk
Conference ObjectAbstract: Real-time fault detection of rotating engine components is a fundamental task for aero community, esPalabras claves:binary particle swarm optimization, multi-layer perceptron, recursive feature elimination, Turbine engine diskAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusMachine learning-based scheme for multi-class fault detection in turbine engine disks
ArticleAbstract: Fault detection of rotating engine components in the aircraft engine is a challenging task that mustPalabras claves:Fault Detection, Multi-layer perceptron (MLP), Recursive feature elimination (RFE), Turbine engine diskAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusJoint beamforming and artificial noise optimization for secure transmissions in miso-noma cognitive radio system with swipt
ArticleAbstract: The integration of non-orthogonal multiple access (NOMA) in cognitive radio (CR) networks has demonsPalabras claves:Cognitive Radio (CR), Energy-harvesting (EH), Multiple-input single-output (MISO), Non-Orthogonal Multiple Access (NOMA), Physical-layer security, Simultaneous wireless information and power transfer (SWIPT)Autores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusJoint power allocation and power splitting for MISO SWIPT RSMA systems with energy-constrained users
ArticleAbstract: Simultaneous wireless information and power transfer (SWIPT) has been widely used in multi-input sinPalabras claves:energy harvesting, Miso, Particle Swarm Optimization, Rate-splitting, SWIPTAutores:Koo I., Mario R. Camana, Moreta C.E.G., Tuan P.V.Fuentes:scopusTransmit Beamforming for a MISO SWIPT System with a Power Beacon
Conference ObjectAbstract: This paper studies a multi-user multiple-input single-output (MISO) simultaneous wireless informatioPalabras claves:BEAMFORMING, power beacon, power splitting, semidefinite relaxation (SDR), Simultaneous wireless information and power transfer (SWIPT)Autores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusRate Splitting Multiple Access for a MISO SWIPT System Aided by a Power Beacon
Conference ObjectAbstract: In this paper, we investigate a multiple-input single-output (MISO) rate-splitting multiple access (Palabras claves:Particle Swarm Optimization (PSO), power beacon, Rate-splitting multiple access (RSMA), semidefinite relaxation (SDR), Simultaneous wireless information and power transfer (SWIPT)Autores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusPbkp_rediction of digital terrestrial television coverage using machine learning regression
ArticleAbstract: Appropriate coverage pbkp_rediction is a fundamental task for an operator during the dimensioning prPalabras claves:AdaBoost regressor, Digital terrestrial television, K-nearest neighbors (KNN) regression, Random forest regressionAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopus