Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Conference Object(4)
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(1)
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS(1)
Progress in Biomedical Optics and Imaging - Proceedings of SPIE(1)
STSIVA 2012 - 17th Symposium of Image, Signal Processing, and Artificial Vision(1)
Área temáticas
Ciencias de la computación(2)
Enfermedades(1)
Fisiología humana(1)
Funcionamiento de bibliotecas y archivos(1)
Medicina y salud(1)
Constrained affinity matrix for spectral clustering: A basic semi-supervised extension
Conference ObjectAbstract: Spectral clustering has represented a good alternative in digital signal processing and pattern recoPalabras claves:Affinity matrix, kernel methods, Prior information, semi-supervised analysis, Spectral clusteringAutores:Castellanos G., Castro-Hoyos C., Diego Hernán Peluffo-OrdóñezFuentes:scopusEffectiveness of morphological and spectral heartbeat characterization on arrhythmia clustering for Holter recordings
Conference ObjectAbstract: Heartbeat characterization is an important issue in cardiac assistance diagnosis systems. In particuPalabras claves:clustering methods, Feature Extraction, Signal analysisAutores:Castellanos-Dominguez G., Castro-Hoyos C., Diego Hernán Peluffo-Ordóñez, Rodríguez-Sotelo J.L.Fuentes:scopusNovel heuristic search for ventricular arrhythmia detection using normalized cut clustering
Conference ObjectAbstract: Processing of the long-term ECG Holter recordings for accurate arrhythmia detection is a problem thaPalabras claves:cardiac arrhythmia, heuristic search, kernel density estimator, Normalized cut clusteringAutores:A. E. Castro-Ospina, Castellanos-Dominguez G., Castro-Hoyos C., Diego Hernán Peluffo-OrdóñezFuentes:scopusQuadratic problem formulation with linear constraints for normalized cut clustering
Conference ObjectAbstract: This work describes a novel quadratic formulation for solving the normalized cuts-based clustering pPalabras claves:Autores:Acosta-Medina C.D., Castellanos-Dominguez G., Castro-Hoyos C., Diego Hernán Peluffo-OrdóñezFuentes:scopus