Mostrando 10 resultados de: 17
Filtros aplicados
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(3)
Transactions of the Japanese Society for Artificial Intelligence(2)
2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings(1)
2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010(1)
2010 World Automation Congress, WAC 2010(1)
Analysis of NSGA-II and NSGA-II with CDAS, and proposal of an enhanced CDAS mechanism
Conference ObjectAbstract: In this work, we analyze the functionality transition in the evolution process of NSGA-II and an enhPalabras claves:Controlling dominance area of solutions, Functionality transition, Multiobjective evolutionary algorithm, Multiobjective optimization, NSGA-IIAutores:Hernán E. Aguirre, Sato H., Tanaka K., Tsuchida K.Fuentes:scopusA study on interval to swtich combination of objectives considered in pareto partial dominance MOEA
Conference ObjectAbstract: Pareto partial dominance MOEA (PPD-MOEA) ranks individuals in the population by using only r (<m) obPalabras claves:Interval generation, many-objective optimization, MOEA, Pareto partial dominanceAutores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusControlling dominance area of solutions and its impact on the performance of MOEAs
Conference ObjectAbstract: This work proposes a method to control the dominance area of solutions in order to induce appropriatPalabras claves:Autores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusGenetic diversity and effective crossover in evolutionary many-objective optimization
Conference ObjectAbstract: In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective croPalabras claves:Autores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusDynamic control of the number of crossed genes in evolutionary many-objective optimization
Conference ObjectAbstract: When multi-objective evolutionary algorithms (MOEAs) are applied to many-objective optimization probPalabras claves:Autores:Coello Coello C.A., Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusEffects of MOEA temporally switching pareto partial dominance on many-objective 0/1 knapsack problems
ArticleAbstract: In this work, we propose a novel multi-objective evolutionary algorithm (MOEA) which improves searchPalabras claves:Many-objective 0/1 knapsack problem, Many-objective optimizaion, Multi-objective evolutionary algorithm, Pareto partial dominanceAutores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusOn the locality of dominance and recombination in multiobjective evolutionary algorithms
Conference ObjectAbstract: This work studies and compares the effects on performance of local dominance and local recombinationPalabras claves:Autores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusPareto partial dominance MOEA and hybrid archiving strategy included CDAS in many-objective optimization
Conference ObjectAbstract: In this work, we propose a novel multi-objective evolutionary algorithm (MOEA) that uses Pareto partPalabras claves:Autores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusImproved S-CDAS using crossover controlling the number of crossed genes for many-objective optimization
Conference ObjectAbstract: Self-controlling dominance area of solutions (S-CDAS) reclassifies solutions in each front obtainedPalabras claves:Control of the number of crossed genes, Evolutionary many-objective optimization, Self-control of dominance area of solutionsAutores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopusLocal dominance MOEA including control of dominance area of solutions on 0/1 multiobjective knapsack problems
ArticleAbstract: Local dominance has been shown to improve significantly the overall performance of multiobjective evPalabras claves:Control of dominance area of solutions, Evolutionary multi and many objectives optimization, Local dominance, SelectionAutores:Hernán E. Aguirre, Sato H., Tanaka K.Fuentes:scopus