Mostrando 7 resultados de: 7
Filtros aplicados
Publisher
IEEE Access(6)
Proceedings - 2020 International Conference of Digital Transformation and Innovation Technology, INCODTRIN 2020(1)
Área temáticas
Funcionamiento de bibliotecas y archivos(7)
Métodos informáticos especiales(2)
Dirección general(1)
Economía financiera(1)
Interacción social(1)
Área de conocimiento
Aprendizaje automático(6)
Ciencias de la computación(6)
Algoritmo(1)
Análisis de datos(1)
Inteligencia artificial(1)
Origen
scopus(7)
Comparative Performance of Collaborative Filtering Recommendations Methods for Explaining Recommendations
Conference ObjectAbstract: In this paper a comparative performance of some collaborative filtering methods for recommender systPalabras claves:Bayesian models, biclustering, COLLABORATIVE FILTERING, Recommender systemAutores:Ortega F., Priscila Valdiviezo-DiazFuentes:googlescopusAn efficient recommender system method based on the numerical relevances and the non-numerical structures of the ratings
ArticleAbstract: In this paper, we propose a collaborative filtering method designed to improve the current memory-baPalabras claves:COLLABORATIVE FILTERING, model-based methods, pbkp_rediction time, performance, recommender systems, Similarity MeasuresAutores:Bobadilla J., Ortega F., Remigio Hurtado Ortiz, Zhu B.Fuentes:googlescopusA Collaborative Filtering Approach Based on Naïve Bayes Classifier
ArticleAbstract: Recommender system is an information filtering tool used to alleviate information overload for usersPalabras claves:COLLABORATIVE FILTERING, hybrid CF, Naïve Bayes classifier, recommender systems, reliability measureAutores:Cobos E., Lara-Cabrera R., Ortega F., Priscila Valdiviezo-DiazFuentes:googlescopusA new recommendation approach based on probabilistic soft clustering methods: A scientific documentation case study
ArticleAbstract: Recommender system (RS) clustering is an important issue, both for the improvement of the collaboratPalabras claves:COLLABORATIVE FILTERING, recommender systems, Scientific documentation, Soft clusteringAutores:Bobadilla J., Li X., Ortega F., Remigio Hurtado Ortiz, Rodolfo Bojorque-ChasiFuentes:googlescopusArtificial Intelligence Scientific Documentation Dataset for Recommender Systems
ArticleAbstract: The existing scientific documentation-based recommender systems focus on exploiting the citations anPalabras claves:Artificial Intelligence, Data Mining, Dataset, Machine learning, recommender systems, Scientific documentation, SCOPUS, TopicsAutores:Bobadilla J., Gutiérrez A., Li X., Ortega F., Remigio Hurtado OrtizFuentes:googlescopusHybrid Collaborative Filtering Based on Users Rating Behavior
ArticleAbstract: Several collaborative filtering (CF) approaches have been developed in order to improve the qualityPalabras claves:COLLABORATIVE FILTERING, hybrid CF, Knn, matrix factorization, recommender systemsAutores:Ortega F., Priscila Valdiviezo-Diaz, Raya L., Rojo D.Fuentes:googlescopusRecommendation to Groups of Users Using the Singularities Concept
ArticleAbstract: Recommendation to a group of users is a big challenge for collaborative filtering. The recommendatioPalabras claves:COLLABORATIVE FILTERING, group of users, Recommendation to groups, recommender systems, SingularityAutores:Bobadilla J., Ortega F., Remigio Hurtado Ortiz, Rodolfo Bojorque-ChasiFuentes:googlescopus