Dynamic ultrafiltration modelling for a submerged membrane bioreactor based on neural networks


Abstract:

A neural network (NN) model to pbkp_redict the membrane performance in a scale pilot submerged membrane bioreactor (SMBR) has been developed. This SMBR has been used for the aerobic treatment of municipal wastewater. The aim of this work was to pbkp_redict the dynamic behavior of the transmembrane pressure (TMP) as a function of three operating parameters, i.e., permeate flux, the mixed liquor suspended solids and the hydraulic cleaning cycles. The applied NN was a multilayer perceptron network (MLPN) and the Levenberg-Marquardt (LM) optimization algorithm was employed for its training. © 2010 Taylor & Francis Group, London.

Año de publicación:

2010

Keywords:

  • Neural networks
  • Membrane bioreactor
  • Ultrafiltration

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Simulación por computadora
  • Red neuronal artificial
  • Biotecnología

Áreas temáticas:

  • Ingeniería sanitaria
  • Física aplicada
  • Métodos informáticos especiales