Dynamic ultrafiltration modelling for a submerged membrane bioreactor based on neural networks
Abstract:
A neural network (NN) model to predict the membrane performance in a scale pilot submerged membrane bioreactor (SMBR) has been developed. This SMBR has been used for the aerobic treatment of municipal wastewater. The aim of this work was to predict the dynamic behavior of the transmembrane pressure (TMP) as a function of three operating parameters, i.e., permeate flux, the mixed liquor suspended solids and the hydraulic cleaning cycles. The applied NN was a multilayer perceptron network (MLPN) and the Levenberg-Marquardt (LM) optimization algorithm was employed for its training. © 2010 Taylor & Francis Group, London.
Año de publicación:
2010
Keywords:
- Neural networks
- Membrane bioreactor
- Ultrafiltration
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Simulación por computadora
- Red neuronal artificial
- Biotecnología
Áreas temáticas de Dewey:
- Ingeniería sanitaria
- Física aplicada
- Métodos informáticos especiales

Objetivos de Desarrollo Sostenible:
- ODS 6: Agua limpia y saneamiento
- ODS 12: Producción y consumo responsables
- ODS 9: Industria, innovación e infraestructura
