Dynamic ultrafiltration modelling for a submerged membrane bioreactor based on neural networks
Abstract:
A neural network (NN) model to pbkp_redict the membrane performance in a scale pilot submerged membrane bioreactor (SMBR) has been developed. This SMBR has been used for the aerobic treatment of municipal wastewater. The aim of this work was to pbkp_redict the dynamic behavior of the transmembrane pressure (TMP) as a function of three operating parameters, i.e., permeate flux, the mixed liquor suspended solids and the hydraulic cleaning cycles. The applied NN was a multilayer perceptron network (MLPN) and the Levenberg-Marquardt (LM) optimization algorithm was employed for its training. © 2010 Taylor & Francis Group, London.
Año de publicación:
2010
Keywords:
- Neural networks
- Membrane bioreactor
- Ultrafiltration
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Simulación por computadora
- Red neuronal artificial
- Biotecnología
Áreas temáticas:
- Ingeniería sanitaria
- Física aplicada
- Métodos informáticos especiales