Enhanced Cytotoxicity of Cadmium by a Sulfated Polysaccharide from Abalone


Abstract:

Consumption of seafood is a common route of cadmium ion (Cd2+) exposure to consumers. The seafood matrices may alter the toxicity profile of Cd2+ due to the interaction between Cd2+ and biomacromolecules in seafood. In this study, enhanced cytotoxicity of Cd2+ was found in the presence of an abalone gonad sulfated polysaccharide (AGSP) and the mechanism was investigated at a metabolic level. The formation of the AGSP-Cd2+ complex was demonstrated by isothermal titration calorimetry. The level of reactive oxygen species (ROS) increased and mitochondrial membrane potential reduced upon exposure to the AGSP-Cd2+ complex as compared with those of Cd2+ exposure. The decreased cell viability after incubation with the AGSP-Cd2+ complex also suggested enhanced Cd2+ toxicity induced by AGSP. The metabolomics and lipidomics analysis revealed that, compared with the Cd2+ group, the AGSP-Cd2+ downregulated the phospholipid metabolism and resulted in more serious damage in the cellular membrane. The lipid metabolism disorder, in turn, amplified the generation of ROS, leading to a decrease in cell viability. These results provided new evidence of the enhanced Cd2+ toxicity upon interaction with seafood polysaccharides, and much attention should be paid to the effect of food ingbkp_redients on heavy metal ion toxicity.

Año de publicación:

2020

Keywords:

  • apoptosis
  • lipidomics
  • metabolism
  • abalone gonadal polysaccharide
  • cell cycle
  • cadmium ion

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Bioquímica
  • Bioquímica
  • Toxicología

Áreas temáticas:

  • Farmacología y terapéutica
  • Bioquímica
  • Fisiología humana