Amiodarone and miltefosine act synergistically against Leishmania mexicana and can induce parasitological cure in a murine model of cutaneous leishmaniasis


Abstract:

Leishmaniasis is parasitic disease that is an important problem of public health worldwide. Intramuscularly administered glucantime and pentostam are the most common drugs used for treatment of this disease, but they have significant limitations due to toxicity and increasing resistance. A recent breakthrough has been the introduction of orally administered miltefosine for the treatment of visceral, cutaneous, and mucocutaneous leishmaniasis, but the relative high cost and concerns about teratogenicity have limited the use of this drug. Searching for alternative drugs, we previously demonstrated that the antiarrhythmic drug amiodarone is active against Leishmania mexicana promastigotes and intracellular amastigotes, acting via disruption of intracellular Ca2+ homeostasis (specifically at the mitochondrion and the acidocalcisomes of these parasites) and through inhibition of the parasite's de novo sterol biosynthesis (X. Serrano-Martín, Y. García-Marchan, A. Fernandez, N. Rodriguez, H. Rojas, G. Visbal, and G. Benaim, Antimicrob. Agents Chemother. 53:1403-1410, 2009). In the present work, we found that miltefosine also disrupts the parasite's intracellular Ca2+ homeostasis, in this case by inducing a large increase in intracellular Ca2+ levels, probably through the activation of a plasma membrane Ca2+ channel. We also investigated the in vitro and in vivo activities of amiodarone and miltefosine, used alone or in combination, on L. mexicana. It was found that the drug combination had synergistic effects on the proliferation of intracellular amastigotes growing inside macrophages and led 90% of parasitological cures in a murine model of leishmaniasis, as revealed by a PCR assay using a novel DNA sequence specific for L. mexicana. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Año de publicación:

2009

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Parasitología
    • Infección

    Áreas temáticas:

    • Microorganismos, hongos y algas
    • Aves
    • Farmacología y terapéutica