Event-based localization in ackermann steering limited resource mobile robots
Abstract:
This paper presents a local sensor fusion technique with an event-based global position correction to improve the localization of a mobile robot with limited computational resources. The proposed algorithms use a modified Kalman filter and a new local dynamic model of an Ackermann steering mobile robot. It has a similar performance but faster execution when compared to more complex fusion schemes, allowing its implementation inside the robot. As a global sensor, an event-based position correction is implemented using the Kalman filter error covariance and the position measurement obtained from a zenithal camera. The solution is tested during a long walk with different trajectories using a LEGO Mindstorm NXT robot. © 1996-2012 IEEE.
Año de publicación:
2014
Keywords:
- Kalman filtering
- event-based systems
- Embedded Systems
- Dynamic model
- mobile robots
- inertial sensors
- global positioning systems (GPSs)
- Sensor fusion
- pose estimation
- Robot sensing systems
- position measurement
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Robótica
- Control robusto
Áreas temáticas:
- Métodos informáticos especiales