Event-based localization in ackermann steering limited resource mobile robots


Abstract:

This paper presents a local sensor fusion technique with an event-based global position correction to improve the localization of a mobile robot with limited computational resources. The proposed algorithms use a modified Kalman filter and a new local dynamic model of an Ackermann steering mobile robot. It has a similar performance but faster execution when compared to more complex fusion schemes, allowing its implementation inside the robot. As a global sensor, an event-based position correction is implemented using the Kalman filter error covariance and the position measurement obtained from a zenithal camera. The solution is tested during a long walk with different trajectories using a LEGO Mindstorm NXT robot. © 1996-2012 IEEE.

Año de publicación:

2014

Keywords:

  • Kalman filtering
  • event-based systems
  • Embedded Systems
  • Dynamic model
  • mobile robots
  • inertial sensors
  • global positioning systems (GPSs)
  • Sensor fusion
  • pose estimation
  • Robot sensing systems
  • position measurement

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Robótica
  • Control robusto

Áreas temáticas:

  • Métodos informáticos especiales