Fuzzy Model Predictive Control for Takagi & Sugeno Systems with Optimised Prediction Dynamics
Abstract:
This paper presents the design of a Model Predictive Control (MPC) strategy for Takagi & Sugeno (TS) systems that is based on a control law with optimised prediction dynamics, first proposed in a context of Robust MPC for systems with multiplicative uncertainty. Based on the similarities between this kind of systems and state-space TS systems, this predicted control law is adapted to fuzzy models to exploit the known information of the normalised degrees of activation. It is described how to design the parameters of the controller and how to apply it closed-loop fashion. It is shown that the proposed controller is guaranteed to be recursively feasible and asymptotically stabilises the controlled systems. A simulation example shows the attributes and benefits of the proposed controller.
Año de publicación:
2022
Keywords:
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Algoritmo
- Teoría de control
Áreas temáticas de Dewey:
- Ciencias de la computación
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico