Fuzzy Model Predictive Control for Takagi & Sugeno Systems with Optimised Prediction Dynamics


Abstract:

This paper presents the design of a Model Predictive Control (MPC) strategy for Takagi & Sugeno (TS) systems that is based on a control law with optimised prediction dynamics, first proposed in a context of Robust MPC for systems with multiplicative uncertainty. Based on the similarities between this kind of systems and state-space TS systems, this predicted control law is adapted to fuzzy models to exploit the known information of the normalised degrees of activation. It is described how to design the parameters of the controller and how to apply it closed-loop fashion. It is shown that the proposed controller is guaranteed to be recursively feasible and asymptotically stabilises the controlled systems. A simulation example shows the attributes and benefits of the proposed controller.

Año de publicación:

2022

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Algoritmo
    • Teoría de control

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    • Programación informática, programas, datos, seguridad
    • Métodos informáticos especiales
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA