Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids
Abstract:
An energy management system (EMS) determines the dispatching of generation units based on an optimizer that requires the forecasting of both renewable resources and loads. The forecasting system discussed in this paper includes a representation of the uncertainties associated with renewable resources and loads. The proposed modeling generates fuzzy prediction interval models that incorporate an uncertainty representation of future predictions. The model is demonstrated using solar and wind generation and local load data from a real microgrid in Huatacondo, Chile, for one-day ahead forecasts to obtain the expected values together with fuzzy prediction intervals to represent future measurement bounds with a certain coverage probability. The proposed prediction interval models would help to enable the development of robust microgrid EMS.
Año de publicación:
2015
Keywords:
- Renewable
- Pbkp_rediction Intervals
- Energy Management System (EMS)
- microgrid
- forecasting
- fuzzy modeling
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Energía
- Energía renovable
Áreas temáticas de Dewey:
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 7: Energía asequible y no contaminante
- ODS 13: Acción por el clima
- ODS 9: Industria, innovación e infraestructura