Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids


Abstract:

An energy management system (EMS) determines the dispatching of generation units based on an optimizer that requires the forecasting of both renewable resources and loads. The forecasting system discussed in this paper includes a representation of the uncertainties associated with renewable resources and loads. The proposed modeling generates fuzzy prediction interval models that incorporate an uncertainty representation of future predictions. The model is demonstrated using solar and wind generation and local load data from a real microgrid in Huatacondo, Chile, for one-day ahead forecasts to obtain the expected values together with fuzzy prediction intervals to represent future measurement bounds with a certain coverage probability. The proposed prediction interval models would help to enable the development of robust microgrid EMS.

Año de publicación:

2015

Keywords:

  • Renewable
  • Pbkp_rediction Intervals
  • Energy Management System (EMS)
  • microgrid
  • forecasting
  • fuzzy modeling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Energía
  • Energía renovable

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 7: Energía asequible y no contaminante
  • ODS 13: Acción por el clima
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA