GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl
Abstract:
Phytophthora infestans is the most important potato pathogen worldwide. Various alternatives have been used to control the pathogen, including continuous applications of phenylamide fungicides which has caused a rapid development of resistance in populations of P. infestans. Despite the importance of the disease, metabolite profiling of fungicide-resistant P. infestans has not been reported. In vitro resistance of Phytophthora infestans isolates to metalaxyl was characterized and metabolic changes in resistant isolates were evaluated at low (0.5 mg/L) and high (100 mg/L) concentrations of the fungicide. About 70% of the isolates tested showed resistance to metalaxyl and a total of 49 metabolites were differently expressed in resistant isolates growing in the presence of the fungicide. Principal components analysis revealed a distinct metabolite profile of resistant isolates exposed to both low and high levels of metalaxyl. The main metabolites responsible for the clustering in both fungicide concentrations included fatty acids such as hexadecanoic and octadecanoic acids, sugars such as glucose and fructose, aminoacids such as proline and valine, and organic acids such as butanedioic and propanoic acids. Potential resistance-related metabolic pathways are mostly involved in the regulation of the pathogen’s membrane fluidity and included the fatty acid biosynthesis as well as the glycerophospholipid metabolism pathways. This is the first metabolomic-based characterization of fungicide resistance in plant pathogens.
Año de publicación:
2017
Keywords:
- GC-MS
- Fungicide resistance
- potato
- Metabolomics
- Late blight
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Bioquímica
- Microbiología
- Microbiología
Áreas temáticas:
- Microorganismos, hongos y algas
- Bioquímica