Hardware-software co-design for efficient and scalable real-time emulation of SNNs on the edge


Abstract:

This paper introduces a novel workflow for Distributed Spiking Neural Network Architecture (DSNA). As such, the hardware implementation of Single Instruction Multiple Data (SIMD)-based Spiking Neural Network (SNN) requires the development of user-friendly and efficient toolchain in order to maximise the potential that the architecture brings. By using a novel SNN architecture, a custom designed hardware/software toolchain has been developed. The toolchain performance has been experimentally checked on a Band-Pass Filter (BPF), obtaining optimized code and data.

Año de publicación:

2021

Keywords:

  • Hardware-Software Integration
  • HEENS
  • Spiking Neural Networks
  • SNN
  • Neural Computing
  • Edge computing
  • SNAVA

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Simulación por computadora

Áreas temáticas:

  • Ciencias de la computación
  • Programación informática, programas, datos, seguridad
  • Métodos informáticos especiales