Hardware-software co-design for efficient and scalable real-time emulation of SNNs on the edge
Abstract:
This paper introduces a novel workflow for Distributed Spiking Neural Network Architecture (DSNA). As such, the hardware implementation of Single Instruction Multiple Data (SIMD)-based Spiking Neural Network (SNN) requires the development of user-friendly and efficient toolchain in order to maximise the potential that the architecture brings. By using a novel SNN architecture, a custom designed hardware/software toolchain has been developed. The toolchain performance has been experimentally checked on a Band-Pass Filter (BPF), obtaining optimized code and data.
Año de publicación:
2021
Keywords:
- Hardware-Software Integration
- HEENS
- Spiking Neural Networks
- SNN
- Neural Computing
- Edge computing
- SNAVA
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Simulación por computadora
Áreas temáticas:
- Ciencias de la computación
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales