Hierarchical MPC schemes for periodic systems using stochastic programming


Abstract:

We show that stochastic programming provides a framework to design hierarchical model pbkp_redictive control (MPC) schemes for periodic systems. This is based on the observation that, if the state policy of an infinite-horizon problem is periodic, the problem can be cast as a stochastic program (SP). This reveals that it is possible to update periodic state targets by solving a retroactive optimization problem that progressively accumulates historical data. Moreover, we show that the retroactive problem is a statistical approximation of the SP and thus delivers optimal targets in the long run. Notably, the computation of the optimal targets can be achieved without data forecasts. The SP setting also reveals that the retroactive problem can be seen as a high-level hierarchical layer that provides targets to guide a low-level MPC controller that operates over a short period at high time resolution. We derive a retroactive scheme tailored to linear systems by using cutting plane techniques and suggest strategies to handle nonlinear systems and to analyze stability properties.

Año de publicación:

2019

Keywords:

  • Cutting planes
  • Model Pbkp_redictive Control
  • Hierarchical
  • multiscale

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Control óptimo

Áreas temáticas:

  • Sistemas