Hybrid-fuzzy modeling and identification
Abstract:
In this paper a class of hybrid-fuzzy models is presented, where binary membership functions are used to capture the hybrid behavior. We describe a hybrid-fuzzy identification methodology for non-linear hybrid systems with mixed continuous and discrete states that uses fuzzy clustering and principal component analysis. The method first determines the hybrid characteristic of the system inspired by an inverse form of the merge method for clusters, which makes it possible to identify the unknown switching points of a process based on just input-output (I/O) data. Next, using the detected switching points, a hard partition of the I/O space is obtained. Finally, TS fuzzy models are identified as submodels for each partition. Two illustrative examples, a hybrid-tank system and a traffic model for highways, are presented to show the benefits of the proposed approach. © 2013 Elsevier B.V.
Año de publicación:
2014
Keywords:
- hybrid systems
- fuzzy identification
- Principal Component Analysis
- Switching regression models
- Fuzzy Clustering
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Algoritmo
Áreas temáticas:
- Métodos informáticos especiales
- Ciencias de la computación
- Programación informática, programas, datos, seguridad