A Multi-label Approach for Diagnosis Problems in Energy Systems using LAMDA algorithm
Abstract:
In this paper, we propose a supervised multilabel algorithm called Learning Algorithm for Multivariate Data Analysis for Multilabel Classification (LAMDA-ML). This algorithm is based on the algorithms of the LAMDA family, in particular, on the LAMDA-HAD (Higher Adequacy Grade) algorithm. Unlike previous algorithms in a multi-label context, LAMDA-ML is based on the Global Adequacy Degree (GAD) of an individual in multiple classes. In our proposal, we define a membership threshold (Gt), such that for all GAD values above this threshold, it implies that an individual will be assigned to the respective classes. For the evaluation of the performance of this proposal, a solar power generation dataset is used, with very encouraging results according to several metrics in the context of multiple labels.
Año de publicación:
2022
Keywords:
- fuzzy systems
- LAMDA
- Multilabel classification
- diagnosis problems
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Energía
- Energía
- Simulación por computadora
Áreas temáticas:
- Física aplicada
- Métodos informáticos especiales