Overlapping Schwarz Decomposition for Constrained Quadratic Programs


Abstract:

We present an overlapping Schwarz decomposition algorithm for constrained quadratic programs (QPs). Schwarz algorithms have been traditionally used to solve linear algebra systems arising from partial differential equations, but we have recently shown that they are also effective at solving structured optimization problems. In the proposed scheme, we consider QPs whose algebraic structure can be represented by graphs. The graph domain is partitioned into overlapping subdomains (yielding a set of coupled subproblems), solutions for the subproblems are computed in parallel, and convergence is enforced by updating primal-dual information in the overlapping regions. We show that convergence is guaranteed if the overlap is sufficiently large and that the convergence rate improves exponentially with the size of the overlap. Convergence results rely on a key property of graph-structured problems that is known as exponential decay of sensitivity. Here, we establish conditions under which this property holds for constrained QPs (as those found in network optimization and optimal control), thus extending existing work that addresses unconstrained QPs. The numerical behavior of the Schwarz scheme is demonstrated by using a DC optimal power flow problem defined over a network with 9,241 nodes.

Año de publicación:

2020

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad