Parameters optimization applying monte carlo methods and evolutionary algorithms. Enforcement to a trajectory tracking controller in non-linear systems
Abstract:
In this work, a closed-loop control strategy is proposed. It allows tracking optimal profiles for a fed-batch bioprocess. The main advantage of this approach is that the control actions are computed from a linear equations system without linearizing the mathematical model, which allows working in any range. In addition, three techniques are developed to tune the controller. First, a completely probabilistic method, Monte Carlo. Second, a methodology based on Genetic Algorithms, an evolutionary optimization technique. Third, a Hybrid Algorithm, combining above algorithms advantages. Here, the objective function is to find the controller parameters that minimize the trajectory tracking total error. The controller performance is evaluated through simulations under normal operations conditions and parametric uncertainty, using the obtained controller parameters.
Año de publicación:
2019
Keywords:
- Closed loop control
- Genetic Algorithms
- Monte Carlo method
- Nonlinear systems
- Multivariable control systems
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Control óptimo
Áreas temáticas:
- Ciencias de la computación