Pedestrian Detection for UAVs Using Cascade Classifiers with Meanshift
Abstract:
In this paper, we propose an algorithm for pedestrian detection focusing on UAV applications. Our proposal is based on a combination of Haar-LBP features with Adaboost for the training process, and Meanshift for improving the performance of the pedestrian detector. We mount a dataset with images captured from surveillance cameras. Our dataset and algorithm are evaluated and compared with other approaches from the literature.
Año de publicación:
2017
Keywords:
- Cascade classifiers
- HOG
- HAAR
- LBP
- MeanShift
- People Detection
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
- Simulación por computadora
Áreas temáticas:
- Métodos informáticos especiales
- Física aplicada
- Otras ramas de la ingeniería