Quantifying the surface properties of enzymatically-made porous starches by using a surface energy analyzer


Abstract:

The behavior of starch during processing and its performance in products is influenced by the surface energetics/structure of the constituent particles. This work investigates the effect of enzymatically-produced porous maize starch particles on their energetic surface properties using inverse gas chromatography-based surface energy analysis (SEA). Three modified maize starch samples treated with amylase (AM), glucoamylase (AMG) and cyclodextrin-glycosyltransferase (CGT), were used for the study. The dispersive surface energy varied from 36.71 (native) to 43.34 mJ/m2 (AMG < CGT < AM). Enzyme catalysis resulted in porous starches with a more acidic (AMG) and a more basic (AM) surfaces. CGT exhibited similar acid-base balance as native starch but with higher concentration of active sites on the surface. This is the first study on the surface energy of enzymatically-treated porous starch materials using SEA, revealing significant information regarding the surface interactions that can affect performance of food and pharmaceutical products.

Año de publicación:

2018

Keywords:

  • Surface energetics
  • Inverse gas chromatography
  • Starch structure
  • Water-sorption
  • Enzymes
  • porous starch

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Bioquímica
  • Bioquímica

Áreas temáticas:

  • Química analítica