A comparative example between the use of PCA and MDS for image classification


Abstract:

In this paper, a practical comparison is performed between the use of the principal component analysis method (PCA) and the multidimensional scaling method (MDS) for image classification applications, where the images under study are contaminated using different tools. Here, characteristics of these images are obtained and, according to criteria for measuring the distance between the images, their classification is carried out. For the case under study, it can be said that the classification using PCA performed better than the classification using MDS.

Año de publicación:

2020

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Ciencias de la computación
    • Ciencias de la computación

    Áreas temáticas:

    • Métodos informáticos especiales