A comparative study of black-box models for cement quality pbkp_rediction using input-output measurements of a closed circuit grinding
Abstract:
This paper presents the methodology of design of three different modeling techniques for pbkp_redicting cement quality using input-output measurements of the closed circuit grinding in a cement plant. The modeling approaches used are: statistical, artificial neural networks (ANN), and adaptive neuro-fuzzy inference systems (ANFIS). The data set for generating the pbkp_redictive models are obtained from a database of the operation of the cement plant, UCEM-Guapan. An OPC (OLE for process control) network configuration in the SCADA system allows online validations of the proposed models in order to select the best approach for real-time pbkp_rediction of cement quality.
Año de publicación:
2016
Keywords:
- artificial neural networks
- Fineness of the cement
- adaptive neuro-fuzzy inference system
- black-box model
Fuente:



Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería de manufactura
- Aprendizaje automático
- Ingeniería de fabricación
Áreas temáticas:
- Ingeniería y operaciones afines
- Física aplicada