A comparative study of black-box models for cement quality pbkp_rediction using input-output measurements of a closed circuit grinding


Abstract:

This paper presents the methodology of design of three different modeling techniques for pbkp_redicting cement quality using input-output measurements of the closed circuit grinding in a cement plant. The modeling approaches used are: statistical, artificial neural networks (ANN), and adaptive neuro-fuzzy inference systems (ANFIS). The data set for generating the pbkp_redictive models are obtained from a database of the operation of the cement plant, UCEM-Guapan. An OPC (OLE for process control) network configuration in the SCADA system allows online validations of the proposed models in order to select the best approach for real-time pbkp_rediction of cement quality.

Año de publicación:

2016

Keywords:

  • artificial neural networks
  • Fineness of the cement
  • adaptive neuro-fuzzy inference system
  • black-box model

Fuente:

scopusscopus
rraaerraae
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ingeniería de manufactura
  • Aprendizaje automático
  • Ingeniería de fabricación

Áreas temáticas:

  • Ingeniería y operaciones afines
  • Física aplicada