Vibrational dynamics and stability of the high-pressure chain and ring phases in S and Se


Abstract:

The high-pressure phases of group-VI elements sulfur and selenium in their spiral chain and ring structures are examined by in situ Raman and x-ray diffraction techniques combined with first principles electronic structure calculations. The S-II, S-III, Se-I, and Se-VII having spiral chain structures and S-VI with a molecular six-member ring structure are studied in a wide P-T range. The square spiral chain structure of S-III and Se-VII is characterized by seven Raman modes that harden with increasing pressure. The calculations reproduce the observed frequencies and allow the authors to make the mode assignment. The "p-S" and "hplt" phases of sulfur reported by previous Raman studies are identified as S-II and S-III with the triangular and square spiral chain structures, respectively. The phase relations obtained by the x-ray and Raman measurements show that the high-pressure high-temperature phases of sulfur, observed by x-ray, can be induced by laser illumination at room temperature. © 2007 American Institute of Physics.

Año de publicación:

2007

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Física
    • Ciencia de materiales
    • Química física

    Áreas temáticas:

    • Química analítica
    • Química inorgánica
    • Cristalografía