Avatar: Enhancing the personalized television by semantic inference
Abstract:
The generalized arrival of Digital TV will lead to a significant increase in the amount of channels and programs available to end users, making it difficult to find interesting programs among a myriad of irrelevant contents. Thus, in this field, automatic content recommenders should receive special attention in the following years to improve assistance to users. Current approaches of content recommenders have significant well-known deficiencies that hamper their wide acceptance. In this paper, a new approach for automatic content recommendation is presented that considerably reduces those deficiencies. This approach, based on the so-called Semantic Web technologies, has been implemented in the AVATAR tool, a hybrid content recommencler that makes extensive use of wellknown standards, such as TV-Anytime and OWL. Our proposal has been evaluated experimentally with real users, showing significant increases in the recommendation accuracy with respect to other existing approaches. © World Scientific Publishing Company.
Año de publicación:
2007
Keywords:
- digital TV
- COLLABORATIVE FILTERING
- Content-based filtering
- Semantic inference
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Web Semántica
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Interacción social
- Actuaciones públicas