Cascade classifiers based robust pedestrian detection
Abstract:
This paper proposes a dataset and algorithms for pedestrian detection in UAVs. The method proposed is a HAARLBP based cascade classifier combined with saliency maps for improving the performance of the detector. In addition we introduce a dataset with images from surveillance cameras at different angles and altitudes emulating a UAV. We validate our dataset by the implementation of HOG algorithm and compared it with other approaches from the literature. The results show that HAAR-LBP algorithm has better performance than HAAR like features; our dataset is better for pedestrian detection using UAVs and the use of saliency maps improves the performance of cascade classifiers.
Año de publicación:
2017
Keywords:
- Pedestrian Detection
- Cascade classifiers
- HAAR
- Saliency Maps
- HOG
- LBP
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación