Characterizing the predictive accuracy of dynamic mode decomposition for data-driven control


Abstract:

Dynamic mode decomposition (DMD) is a versatile approach that enables the construction of low-order models from data. Controller design tasks based on such models require estimates and guarantees on predictive accuracy. In this work, we provide a theoretical analysis of DMD model errors that reveals impacts of model order and data availability. The analysis also establishes conditions under which DMD models can be made asymptotically exact. We numerically validate our theoretical results using a 2D diffusion system.

Año de publicación:

2020

Keywords:

  • Dynamic mode decomposition
  • error bounds
  • Low-order models
  • DATA
  • control

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Teoría de control

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 4: Educación de calidad
Procesado con IAProcesado con IA