Classical music pbkp_rediction and composition by means of variational autoencoders


Abstract:

This paper proposes a new model for music pbkp_rediction based on Variational Autoencoders (VAEs). In thiswork, VAEs are used in a novelway to address two different issues: music representation into the latent space, and using this representation to make pbkp_redictions of the future note events of the musical piece. This approach was trained with different songs of Handel. As a result, the system can represent the music in the latent space, and make accurate pbkp_redictions. Therefore, the system can be used to compose new music either from an existing piece or from a random starting point. An additional feature of this system is that a small dataset was used for training. However, results show that the system is able to return accurate representations and pbkp_redictions on unseen data.

Año de publicación:

2020

Keywords:

  • Variational autoencoders
  • Music composition
  • deep learning

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Instrumentos y conjuntos instrumentales
  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos