Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing
Abstract:
EEG-based BCIs rely on classification methods to recognize the brain patterns that encode user’s intention. However, decoding accuracies have reached a plateau and therefore novel classification techniques should be evaluated. This paper proposes the use of Lattice Neural Networks with Dendritic Processing (LNND) for the classification of hand movements from electroencephalographic (EEG) signals. The performance of this technique was evaluated and compared with classical classifiers using EEG signals recorded form participants performing motor tasks. The result showed that LNND provides: (i) the higher decoding accuracies in experiments using one electrode (DA = 80% and DA = 80% for classification of motor execution and motor imagery, respectively); (ii) distributions of decoding accuracies significantly different and higher than the chance level (p < 0.05, Wilcoxon signed-rank test) in experiments using one, two, four and six electrodes. These results shows that LNND could be a powerful technique for the recognition of motor tasks in BCIs.
Año de publicación:
2015
Keywords:
- Brain-Computer Interface
- Motor imagery
- Lattice Neural Network
- Electroencephalogram
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Red neuronal artificial
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Fisiología humana
- Ingeniería y operaciones afines