Coccinellidae Beetle Specimen Detection Using Convolutional Neural Networks


Abstract:

In this work, we propose a ladybird beetle detector based on a deep learning classifier and the weighted Hausdorff distance as a loss function. The detector was trained and validated using ten-fold cross-validation method on a database composed of 2,633 wildlife images with ladybird beetles. Despite the detector performance was assessed using four metrics, the higher detection result of 98.25% was obtained using the precision metric. This result highlighted the successful performance of the implemented detector, and also, its competence for detecting ladybird beetles in different environments.

Año de publicación:

2021

Keywords:

  • fully convolutional neural network
  • heat map
  • deep learning
  • weighted Hausdorff distance
  • Ladybird beetle detection

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Cristianismo
  • Métodos informáticos especiales