Coccinellidae Beetle Specimen Detection Using Convolutional Neural Networks
Abstract:
In this work, we propose a ladybird beetle detector based on a deep learning classifier and the weighted Hausdorff distance as a loss function. The detector was trained and validated using ten-fold cross-validation method on a database composed of 2,633 wildlife images with ladybird beetles. Despite the detector performance was assessed using four metrics, the higher detection result of 98.25% was obtained using the precision metric. This result highlighted the successful performance of the implemented detector, and also, its competence for detecting ladybird beetles in different environments.
Año de publicación:
2021
Keywords:
- fully convolutional neural network
- heat map
- deep learning
- weighted Hausdorff distance
- Ladybird beetle detection
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Cristianismo
- Métodos informáticos especiales