Comparative analysis of neural pbkp_redictive controllers and its application to a laboratory tank system
Abstract:
In this paper, a novel control strategy based on neural networks is proposed in order to reduce the computation effort of a nonlinear pbkp_redictive controller. The proposed method is favorably compared with the nonlinear pbkp_redictive controller and approximated pbkp_redictive controller based on neural networks. Also, the control strategies are designed and evaluated by simulation tests and in real-time for a laboratory tank system.
Año de publicación:
2004
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Red neuronal artificial
Áreas temáticas:
- Métodos informáticos especiales
- Ingeniería y operaciones afines
- Otras ramas de la ingeniería