Mostrando 10 resultados de: 15
Publisher
Australasian Journal of Combinatorics(4)
AKCE International Journal of Graphs and Combinatorics(2)
Electronic Journal of Graph Theory and Applications(2)
Utilitas Mathematica(2)
Fundamenta Informaticae(1)
Área temáticas
Ciencias de la computación(11)
Principios generales de matemáticas(3)
Física(2)
Matemáticas(2)
Análisis numérico(1)
Origen
scopus(15)
(a, d)-Edge-antimagic total labelings of caterpillars
Conference ObjectAbstract: For a graph G = (V, E), a bijection g from V(G) ∪E(G) into {1,2,..., |V(G)| + |E(G)|} is called (a,Palabras claves:Autores:Martin Bača, Miller M., Slamin, Sugeng K.A.Fuentes:scopusA survey of face-antimagic evaluations of graphs
ArticleAbstract: The concept of face-antimagic labeling of plane graphs was introduced by Mirka Miller in 2003. ThisPalabras claves:Autores:Brankovic L., Jendrol’ S., Lin Y., Martin Bača, Phanalasy O., Ryan J., Semaničova-Fenovciková A., Slamin, Sugeng K.A., Tbaskoro E.Fuentes:scopusConstruction of new larger (a, d)-edge antimagic vertex graphs by using adjacency matrices
ArticleAbstract: Let G = G(V,E) be a finite simple undirected graph with vertex set V and edge set E, where {pipe}E{pPalabras claves:Autores:Martin Bača, Miller M., Rahmawati S., Silaban D.R., Sugeng K.A.Fuentes:scopusFace antimagic labelings of prisms
ArticleAbstract: This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in suchPalabras claves:Autores:Lin Y., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusNote on in-antimagicness and out-antimagicness of digraphs
ArticleAbstract: A digraph D is called (a, d)-vertex-in-antimagic ((a, d)-vertex-out-antimagic) if it is possible toPalabras claves:(a, d)-vertex-in-antimagic graph, (a, d)-vertex-out-antimagic graph, 05C20, 05C78, In-regular digraph, Out-regular digraphAutores:Arumugam S., Marr A., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusOn H-antimagic decomposition of toroidal grids and triangulations
ArticleAbstract: Let (Formula presented.) be a finite simple graph with p vertices and q edges. A decomposition of aPalabras claves:05C78, H-antimagic graph, H-decomposition, H-supermagic graph, Toroidal grid, toroidal triangulationAutores:Hendy , Martin Bača, Mudholifah A.N., Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusOn Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs
ArticleAbstract: Let G = (V, E) be a simple, connected and undirected graph with non empty vertex set V and edge setPalabras claves:Generalized web, Irregular total k-labeling, total edge irregularity strengthAutores:Indriati D., Martin Bača, Sugeng K.A., Widodo , Wijayanti I.E.Fuentes:scopusOn inclusive distance vertex irregular labelings
ArticleAbstract: For a simple graph G, a vertex labeling f: V (G) → (1; 2....,k) is called a k-labeling. The weight oPalabras claves:Inclusive distance vertex irregular labeling, Inclusive distance vertex irregularity strengthAutores:Martin Bača, Semaničova-Fenovciková A., Slamin, Sugeng K.A.Fuentes:scopusOn magicness and antimagicness of the union of 4-regular circulant graphs
ArticleAbstract: Let G = (V,E) be a graph of order n and size e. An (a, d)-vertexantimagic total labeling is a bijectPalabras claves:Autores:Herawati B., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusModular irregularity strength on some flower graphs
ArticleAbstract: Let G = (V (G),E(G)) be a graph with the nonempty vertex set V (G) and the edge set E(G). Let Zn bePalabras claves:daisy graphs, modular irregular labeling, modular irregularity strength, rose graphs, sunflower graphsAutores:Anwar L.F., John P., Lawrence M.L., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopus