Mostrando 10 resultados de: 12
Filtros aplicados
Publisher
Australasian Journal of Combinatorics(3)
Utilitas Mathematica(2)
AKCE International Journal of Graphs and Combinatorics(1)
Electronic Journal of Graph Theory and Applications(1)
Fundamenta Informaticae(1)
Área temáticas
Ciencias de la computación(9)
Principios generales de matemáticas(3)
Matemáticas(2)
Funcionamiento de bibliotecas y archivos(1)
Física(1)
Área de conocimiento
Optimización matemática(6)
Origen
scopus(12)
(a, d)-Edge-antimagic total labelings of caterpillars
Conference ObjectAbstract: For a graph G = (V, E), a bijection g from V(G) ∪E(G) into {1,2,..., |V(G)| + |E(G)|} is called (a,Palabras claves:Autores:Martin Bača, Miller M., Slamin, Sugeng K.A.Fuentes:scopusA survey of face-antimagic evaluations of graphs
ArticleAbstract: The concept of face-antimagic labeling of plane graphs was introduced by Mirka Miller in 2003. ThisPalabras claves:Autores:Brankovic L., Jendrol’ S., Lin Y., Martin Bača, Phanalasy O., Ryan J., Semaničova-Fenovciková A., Slamin, Sugeng K.A., Tbaskoro E.Fuentes:scopusFace antimagic labelings of prisms
ArticleAbstract: This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in suchPalabras claves:Autores:Lin Y., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusNote on in-antimagicness and out-antimagicness of digraphs
ArticleAbstract: A digraph D is called (a, d)-vertex-in-antimagic ((a, d)-vertex-out-antimagic) if it is possible toPalabras claves:(a, d)-vertex-in-antimagic graph, (a, d)-vertex-out-antimagic graph, 05C20, 05C78, In-regular digraph, Out-regular digraphAutores:Arumugam S., Marr A., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusOn Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs
ArticleAbstract: Let G = (V, E) be a simple, connected and undirected graph with non empty vertex set V and edge setPalabras claves:Generalized web, Irregular total k-labeling, total edge irregularity strengthAutores:Indriati D., Martin Bača, Sugeng K.A., Widodo , Wijayanti I.E.Fuentes:scopusOn magicness and antimagicness of the union of 4-regular circulant graphs
ArticleAbstract: Let G = (V,E) be a graph of order n and size e. An (a, d)-vertexantimagic total labeling is a bijectPalabras claves:Autores:Herawati B., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusModular irregularity strength on some flower graphs
ArticleAbstract: Let G = (V (G),E(G)) be a graph with the nonempty vertex set V (G) and the edge set E(G). Let Zn bePalabras claves:daisy graphs, modular irregular labeling, modular irregularity strength, rose graphs, sunflower graphsAutores:Anwar L.F., John P., Lawrence M.L., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusLocal Face Antimagic Evaluations and Coloring of Plane Graphs
ArticleAbstract: We investigate a local face antimagic labeling of plane graphs, and we introduce a new graph charactPalabras claves:local face antimagic chromatic number of type (a; b; c), local face antimagic labeling, Plane graphAutores:Bong N., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A., Wang T.M.Fuentes:scopusLocal inclusive distance vertex irregular graphs
ArticleAbstract: Let G = (V, E) be a simple graph. A vertex labeling f: V(G) → {1, 2, …, k} is defined to be a localPalabras claves:(inclusive) distance vertex irregular labeling, Local (inclusive) distance vertex irregular labelingAutores:Martin Bača, Semaničova-Fenovciková A., Silaban D.R., Sugeng K.A.Fuentes:scopusSome open problems on graph labelings
ArticleAbstract: In this note we present a few open problems on various aspects of graph labelings, which have not bePalabras claves:Antimagic total labeling, Chromatic number, Distance antimagic labeling, Graceful labeling, Irregular labeling, α-labelingAutores:Arumugam S., Froncek D., Martin Bača, Ryan J., Sugeng K.A.Fuentes:scopus