Mostrando 10 resultados de: 15
Filtros aplicados
Publisher
Australasian Journal of Combinatorics(4)
AKCE International Journal of Graphs and Combinatorics(2)
Electronic Journal of Graph Theory and Applications(2)
Utilitas Mathematica(2)
Fundamenta Informaticae(1)
(a, d)-Edge-antimagic total labelings of caterpillars
Conference ObjectAbstract: For a graph G = (V, E), a bijection g from V(G) ∪E(G) into {1,2,..., |V(G)| + |E(G)|} is called (a,Palabras claves:Autores:Martin Bača, Miller M., Slamin, Sugeng K.A.Fuentes:scopusA survey of face-antimagic evaluations of graphs
ArticleAbstract: The concept of face-antimagic labeling of plane graphs was introduced by Mirka Miller in 2003. ThisPalabras claves:Autores:Brankovic L., Jendrol’ S., Lin Y., Martin Bača, Phanalasy O., Ryan J., Semaničova-Fenovciková A., Slamin, Sugeng K.A., Tbaskoro E.Fuentes:scopusConstruction of new larger (a, d)-edge antimagic vertex graphs by using adjacency matrices
ArticleAbstract: Let G = G(V,E) be a finite simple undirected graph with vertex set V and edge set E, where {pipe}E{pPalabras claves:Autores:Martin Bača, Miller M., Rahmawati S., Silaban D.R., Sugeng K.A.Fuentes:scopusFace antimagic labelings of prisms
ArticleAbstract: This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in suchPalabras claves:Autores:Lin Y., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusNote on in-antimagicness and out-antimagicness of digraphs
ArticleAbstract: A digraph D is called (a, d)-vertex-in-antimagic ((a, d)-vertex-out-antimagic) if it is possible toPalabras claves:(a, d)-vertex-in-antimagic graph, (a, d)-vertex-out-antimagic graph, 05C20, 05C78, In-regular digraph, Out-regular digraphAutores:Arumugam S., Marr A., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusOn H-antimagic decomposition of toroidal grids and triangulations
ArticleAbstract: Let (Formula presented.) be a finite simple graph with p vertices and q edges. A decomposition of aPalabras claves:05C78, H-antimagic graph, H-decomposition, H-supermagic graph, Toroidal grid, toroidal triangulationAutores:Hendy , Martin Bača, Mudholifah A.N., Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusOn Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs
ArticleAbstract: Let G = (V, E) be a simple, connected and undirected graph with non empty vertex set V and edge setPalabras claves:Generalized web, Irregular total k-labeling, total edge irregularity strengthAutores:Indriati D., Martin Bača, Sugeng K.A., Widodo , Wijayanti I.E.Fuentes:scopusOn inclusive distance vertex irregular labelings
ArticleAbstract: For a simple graph G, a vertex labeling f: V (G) → (1; 2....,k) is called a k-labeling. The weight oPalabras claves:Inclusive distance vertex irregular labeling, Inclusive distance vertex irregularity strengthAutores:Martin Bača, Semaničova-Fenovciková A., Slamin, Sugeng K.A.Fuentes:scopusOn magicness and antimagicness of the union of 4-regular circulant graphs
ArticleAbstract: Let G = (V,E) be a graph of order n and size e. An (a, d)-vertexantimagic total labeling is a bijectPalabras claves:Autores:Herawati B., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusModular irregularity strength on some flower graphs
ArticleAbstract: Let G = (V (G),E(G)) be a graph with the nonempty vertex set V (G) and the edge set E(G). Let Zn bePalabras claves:daisy graphs, modular irregular labeling, modular irregularity strength, rose graphs, sunflower graphsAutores:Anwar L.F., John P., Lawrence M.L., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopus