Mostrando 6 resultados de: 6
Filtros aplicados
Publisher
2014 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2014(2)
Journal of Diabetes Science and Technology(2)
BMC Medical Informatics and Decision Making(1)
IFMBE Proceedings(1)
A data gathering framework to collect Type 2 diabetes patients data
Conference ObjectAbstract: In this work, we present a framework implemented within the EU project MOSAIC, funded under the FP7Palabras claves:Autores:Barreira M.T.M., Bellazzi R., Bucalo M., Cancela J., Cerra C., Chiovato L., Cobelli C., Dagliati A., Ficο G., María Teresa Arredondo, Millana A.M., Nikita K.S., Sacchi L., Sambo F., Segagni D., Zarkogianni K.Fuentes:scopusCan continuous glucose monitoring identify risk factors in type 1 and type 2 diabetes? A literature review
Conference ObjectAbstract: Self-monitoring of blood glucose has been used for many years to control glucose levels in diabeticPalabras claves:Autores:Cancela J., Cobelli C., Facchinetti A., Ficο G., Isabel M.M., María Teresa ArredondoFuentes:scopusExploring the Frequency Domain of Continuous Glucose Monitoring Signals to Improve Characterization of Glucose Variability and of Diabetic Profiles
ArticleAbstract: Background: Continuous glucose monitoring (CGM) devices measure interstitial glucose concentrationsPalabras claves:continuous glucose monitoring, glucose variability, type 1 diabetes mellitus, Type 2 Diabetes mellitusAutores:Cancela J., Cobelli C., Fabris C., Facchinetti A., Ficο G., Gabriel R., Hernanzez L., Isabel M.M., María Teresa ArredondoFuentes:scopusParsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis
ArticleAbstract: Background: Abnormal glucose variability (GV) is a risk factor for diabetes complications, and tensPalabras claves:continuous glucose monitoring, glucose variability, type 1 diabetes, Type 2 DiabetesAutores:Cobelli C., Fabris C., Facchinetti A., Ficο G., María Teresa Arredondo, Sambo F.Fuentes:scopusUser requirements for incorporating diabetes modeling techniques in disease management tools
Conference ObjectAbstract: Type 2 Diabetes Mellitus (T2DM) is the most common form of diabetes. Early identification of peoplePalabras claves:Health Technology Assessment, Type 2 Diabetes modeling, User requirementsAutores:Bellazzi R., Cancela J., Cobelli C., Dagliati A., Facchinetti A., Fernandez-Llatas C., Ficο G., Guillén A., María Teresa Arredondo, Millana A.M., Sacchi L., Sambo F., Segagni D., Traver V., Verdú J.Fuentes:scopusWhat do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project
ArticleAbstract: Background: To understand user needs, system requirements and organizational conditions towards succPalabras claves:Computerized decision support systems, Human centred design, Multi-disciplinary approach, Risk modelling, Type 2 DiabetesAutores:Bellazzi R., Cancela J., Chiovato L., Cobelli C., Dagliati A., Facchinetti A., Ficο G., Gabriel-Sanchez R., Groop L., Hernanzez L., Manero L., María Teresa Arredondo, Martinez-Millana A., Merino-Torres J.F., Nikita K.S., Ottaviano M., Posada J., Sacchi L., Traver V., Verdú J., Zarkogianni K.Fuentes:scopus