Mostrando 10 resultados de: 11
Filtros aplicados
Publisher
Developments in Mathematics(3)
Discussiones Mathematicae - Graph Theory(2)
Symmetry(2)
Electronic Notes in Discrete Mathematics(1)
Fundamenta Informaticae(1)
Área temáticas
Ciencias de la computación(6)
Análisis(1)
Análisis numérico(1)
Astronomía y ciencias afines(1)
Ciencias sociales(1)
Origen
scopus(11)
A Survey of Irregularity Strength
ArticleAbstract: This survey aims to give an overview of the modifications of the well-known irregular assignments, nPalabras claves:Entire face irregularity strength, face irregular entire k-labeling, Irregularity strength, Plane graphAutores:Jendrol’ S., Kathiresan K., Martin Bača, Muthugurupackiam K., Semaničova-Fenovciková A.Fuentes:scopusGraceful and antimagic labelings
Book PartAbstract: This chapter explores the relationship between antimagic labeling and alpha labelings and also the wPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusEdge-antimagic total labelings
Book PartAbstract: This chapter focuses on edge-antimagic graphs under both vertex labelings and total labelings. SuperPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusNote on in-antimagicness and out-antimagicness of digraphs
ArticleAbstract: A digraph D is called (a, d)-vertex-in-antimagic ((a, d)-vertex-out-antimagic) if it is possible toPalabras claves:(a, d)-vertex-in-antimagic graph, (a, d)-vertex-out-antimagic graph, 05C20, 05C78, In-regular digraph, Out-regular digraphAutores:Arumugam S., Marr A., Martin Bača, Semaničova-Fenovciková A., Sugeng K.A.Fuentes:scopusH-irregularity strengths of plane graphs
ArticleAbstract: Graph labeling is the mapping of elements of a graph (which can be vertices, edges, faces or a combiPalabras claves:Face (edge, Face) H-irregularity strength, Face (edge, Face) labeling, Irregularity strength, VertexAutores:Hinding N., Javed A., Martin Bača, Semaničova-Fenovciková A.Fuentes:scopusOn Face Irregular Evaluations of Plane Graphs
ArticleAbstract: We investigate face irregular labelings of plane graphs and we introduce new graph characteristics,Palabras claves:face irregular labeling, face irregularity strength, irregular assignment, Irregularity strength, plane graphsAutores:Martin Bača, Ovais A., Semaničova-Fenovciková A., Suparta I.N.Fuentes:scopusOn Local Antimagic Vertex Coloring for Complete Full t-ary Trees
ArticleAbstract: Let G = (V, E) be a finite simple undirected graph without K2 components. A bijection f : E → {1, 2,Palabras claves:Antimagic labeling, complete full t-ary tree, Local antimagic chromatic number, Local antimagic labelingAutores:Lai R.T., Martin Bača, Semaničova-Fenovciková A., Wang T.M.Fuentes:scopusOn fractional metric dimension of comb product graphs
ArticleAbstract: A vertex z in a connected graph G resolves two vertices u and v in G if dG(u, z) = dG(v, z). A set oPalabras claves:Comb Product, Fractional Metric Dimension, Resolving FunctionAutores:Lascsáková M., Martin Bača, Saputro S.W., Semaničova-Fenovciková A.Fuentes:scopusOn total h-irregularity strength of the disjoint union of graphs
ArticleAbstract: A simple graph G admits an H-covering if every edge in E(G) belongs to at least to one subgraph of GPalabras claves:copies of graphs, H-covering, H-irregular labeling, total H-irregularity strength, union of graphsAutores:Ashraf F., López S., Martin Bača, Muntaner-Batle F., Oshima A., Semaničova-Fenovciková A.Fuentes:scopusMagic and supermagic graphs
Book PartAbstract: This chapter introduces magic and supermagic graphs giving relevant definitions and tracing the evolPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopus