Mostrando 10 resultados de: 10
Filtros aplicados
Publisher
Computational Optimization and Applications(4)
Applicable Analysis(1)
Control and Cybernetics(1)
ESAIM: Mathematical Modelling and Numerical Analysis(1)
Lecture Notes in Computational Science and Engineering(1)
An adaptive numerical method for semi-infinite elliptic control problems based on error estimates
ArticleAbstract: We discuss numerical reduction methods for an optimal control problem of semi-infinite type with finPalabras claves:elliptic partial differential equation, FEM, Numerical Methods, Optimal Control, semi-infinite programmingAutores:Neitzel I., Pedro Martín Merino Rosero, Pedro Merino, Tröltzsch F.Fuentes:googlescopusA Semismooth Newton Method for Regularized L<sup>q</sup>-quasinorm Sparse Optimal Control Problems
Conference ObjectAbstract: A semismooth Newton method (refered as DC–SSN) is proposed for the numerical solution of a class ofPalabras claves:Autores:Pedro MerinoFuentes:scopusA difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs
ArticleAbstract: We propose a local regularization of elliptic optimal control problems which involves the nonconvexPalabras claves:DC programming, DCA, Elliptic PDE, Nonconvex, Optimal ControlAutores:Pedro Martín Merino Rosero, Pedro MerinoFuentes:googlescopusFinite element error estimates for an optimal control problem governed by the Burgers equation
ArticleAbstract: We derive a-priori error estimates for the finite-element approximation of a distributed optimal conPalabras claves:Burgers equation, error estimates, Finite element approximation, Optimal Control, Piecewise linearAutores:Pedro Martín Merino Rosero, Pedro MerinoFuentes:googlescopusError estimates for the FEM approximation of optimal sparse control of elliptic equations with pointwise state constraints and finite-dimensional control space
ArticleAbstract: In this work, we derive an a priori error estimate of order (Formula presented.) for the finite elemPalabras claves:elliptic partial differential equations, error estimates, Finite Element Method, Optimal Control, sparsityAutores:Alexander Nenjer, Pedro MerinoFuentes:scopusError estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space
ArticleAbstract: The finite element approximation of optimal control problems for semilinear elliptic partial differePalabras claves:Finite element approximation, Finitely many pointwise state constraints, Optimal control problemAutores:Pedro Martín Merino Rosero, Pedro Merino, Tröltzsch F., Vexler B.Fuentes:googlescopusNonsmooth exact penalization second-order methods for incompressible bi-viscous fluids
ArticleAbstract: We consider the exact penalization of the incompressibility condition div (u) = 0 for the velocity fPalabras claves:Bi-viscuous fluids, Exact penalization, Nonsmooth optimization, Second order methodsAutores:Pedro Martín Merino Rosero, Pedro Merino, Sergio González-Andrade, Sofía López-OrdóñezFuentes:googlescopusOn linear-quadratic elliptic control problems of semi-infinite type
ArticleAbstract: We derive a priori error estimates for linear-quadratic elliptic optimal control problems with pointPalabras claves:Elliptic optimal control problem, error estimates, Finite element discretization, Semi-infinite optimization, State constraintsAutores:Neitzel I., Pedro Martín Merino Rosero, Pedro Merino, Tröltzsch F.Fuentes:googlescopusOptimality conditions for state-constrained PDE control problems with time-dependent controls
ArticleAbstract: The paper deals with optimal control problems for semilinear elliptic and parabolic PDEs subject toPalabras claves:Elliptic equation, Optimal Control, Parabolic equation, Pointwise state constraints, Restricted control class, Sufficient optimality conditionsAutores:Juan Carlos De Los Reyes, Pedro Martín Merino Rosero, Pedro Merino, Rehberg J., Tröltzsch F.Fuentes:googlescopusSecond-order orthant-based methods with enriched Hessian information for sparse ℓ<inf>1</inf> -optimization
ArticleAbstract: We present a second order algorithm, based on orthantwise directions, for solving optimization problPalabras claves:Orthantwise directions, Second-order algorithms, semismooth Newton methods, Sparse optimizationAutores:Estefanía Loayza-Romero, Juan Carlos De Los Reyes, Pedro MerinoFuentes:scopus