Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Communications in Computer and Information Science(1)
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology(1)
SCOPUS(1)
Universidad de Guayaquil. Facultad de Ciencias Matemáticas y Físicas. Carrera de Ingeniería en Sistemas Computacionales.(1)
Área temáticas
Ciencias de la computación(2)
Métodos informáticos especiales(2)
Física aplicada(1)
Religión(1)
Applied LSTM Neural Network Time Series to Forecast Household Energy Consumption
Conference ObjectAbstract: In Ecuador, energy consumption is accentuated in the residential sector due to population growth andPalabras claves:buildings, Energy efficiency, forecasting, LSTM, TIME SERIESAutores:Génesis Segura, José Guamán, Julio Barzola-Monteses, Mónica Mite-León, Vicente Macas-EspinosaFuentes:googlescopusApplied LSTM neural network time series to forecast household energy consumption
ArticleAbstract: In Ecuador, energy consumption is accentuated in the residential sector due to population growth anPalabras claves:buildings, Energy efficiency, forecasting, LSTM, TIME SERIESAutores:Génesis Segura, José Guamán, Julio Barzola-Monteses, Mónica Mite-León, Vicente Macas-EspinosaFuentes:rraaeAnálisis de técnicas de validación en modelos aprendizaje automático aplicadas en series tiempo de variable energéticas de un edificio universitario.
Bachelor ThesisAbstract: El ahorro de energía o reducción del consumo de energía es la forma más fácil y efectiva de reducirPalabras claves:Consumo energético, Cross validation, Energy consumption, Machine Learning supervisado, RF, SERIES DE TIEMPO, Supervised machine learning, SVR, TIME SERIES, validación cruzada, XGBoostAutores:John Andrés Robles García, Julio Barzola-MontesesFuentes:rraaeForecasting Energy Consumption in Residential Department Using Convolutional Neural Networks
Conference ObjectAbstract: During 2017, the construction and operation of buildings worldwide represented more than a third (36Palabras claves:buildings, cnn, CNN-LSTM, ConvLSTM, Energy efficiency, Pbkp_rediction models, TIME SERIESAutores:Franklin Ricardo Parrales Bravo, Julio Barzola-Monteses, Marcos Guerrero, Mayken Espinoza-AndaluzFuentes:scopus