Mostrando 9 resultados de: 9
Filtros aplicados
Publisher
Renewable Energy and Power Quality Journal(3)
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2021(1)
Lecture Notes in Civil Engineering(1)
Mathematics(1)
Sensors(1)
Convolutional neural network for wind turbine failure classification based on scada data
ArticleAbstract: As a renewable energy source and an alternative to fossil fuels, the wind power industry is growingPalabras claves:Convolutional neural network, Fast, Fault detection and classification, SCADA data, Wind turbineAutores:Bryan Puruncajas, Christian Tutivén Gálvez, Encalada-Dávila , Vidal Y., William ÁlavaFuentes:googlescopusDamage Detection on Offshore Wind Turbine Jacket Foundations Based on an AutoEncoder
Conference ObjectAbstract: This work addresses the problem of damage detection on offshore wind turbine jacket-type foundationsPalabras claves:Autores:Ángel Encalada-Dávila, Benalcázar-Parra C., Bryan Puruncajas, Christian Tutivén Gálvez, Felipe González, Vidal Y.Fuentes:googlescopusOffshore Wind Turbine Jacket Damage Detection via a Siamese Neural Network
Conference ObjectAbstract: This paper states a methodology to detect damage in the support structure of offshore wind turbines.Palabras claves:Convolutional neural network, Damage classification, damage detection, Data-driven, Jacket structure, Offshore fixed wind turbine, Siamese neural network, Vibration-based SHMAutores:Bryan Puruncajas, Christian Tutivén Gálvez, Joseph Baquerizo, Sampietro J., Vidal Y.Fuentes:scopusMain Bearing Fault Prognosis in Wind Turbines based on Gated Recurrent Unit Neural Networks
ArticleAbstract: The transition from onshore to offshore wind farms is an imminent fact in the future. It supposes toPalabras claves:Fault prognosis, GRU neural networks, Main bearing, SCADA data, Wind turbineAutores:Ángel Encalada-Dávila, Bryan Puruncajas, Christian Tutivén Gálvez, Moyón L., Vidal Y.Fuentes:googlescopusSiamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms
ArticleAbstract: Offshore wind energy is increasingly being realized at deeper ocean depths where jacket foundationsPalabras claves:Convolutional neural network, damage detection, Damage diagnosis, Data-driven, Jacket structure, Offshore fixed wind turbine, Siamese neural network, Vibration-based SHMAutores:Bryan Puruncajas, Christian Tutivén Gálvez, Joseph Baquerizo, Sampietro J., Vidal Y.Fuentes:scopusVibration-response-only structural health monitoring for offshore wind turbine jacket foundations via convolutional neural networks
ArticleAbstract: This work deals with structural health monitoring for jacket-type foundations of offshore wind turbiPalabras claves:Convolutional neural network, damage detection, Damage identification, Jacket, Offshore wind turbine foundation, Signal-to-image conversion, Structural Health MonitoringAutores:Bryan Puruncajas, Christian Tutivén Gálvez, Vidal Y.Fuentes:googlescopusWind turbine main bearing condition monitoring via convolutional autoencoder neural networks
Conference ObjectAbstract: The rapid growth of the energy capacity generated by wind turbines, as well as their size, creates nPalabras claves:Convolutional autoencoder, Fault prognosis, Main bearing, Neural networks, Normality Model, Real SCADA data, Wind turbineAutores:Angel Encalada D.Avila Escuela, Benalcázar-Parra C., Bryan Puruncajas, Christian Tutivén Gálvez, Marcelo Fajardo-Pruna, Vidal Y.Fuentes:googlescopusWind turbine main bearing fault prognosis based solely on scada data
ArticleAbstract: As stated by the European Academy of Wind Energy (EAWE), the wind industry has identified main beariPalabras claves:Fault prognosis, Main bearing, Normality Model, Real SCADA data, Wind turbineAutores:Ángel Encalada-Dávila, Bryan Puruncajas, Christian Tutivén Gálvez, Vidal Y.Fuentes:googlescopusWind turbine multi-fault detection based on scada data via an autoencoder
ArticleAbstract: Nowadays, wind turbine fault detection strategies are settled as a meaningful pipeline to achieve rePalabras claves:Autoencoder, Multi-Fault Detection, Normality Model, SCADA data, Wind turbineAutores:Ángel Encalada-Dávila, Bryan Puruncajas, Christian Tutivén Gálvez, Vidal Y.Fuentes:googlescopus