Mostrando 9 resultados de: 9
Filtros aplicados
Subtipo de publicación
Conference Object(9)
Área temáticas
Ciencias de la computación(2)
Farmacología y terapéutica(2)
Fisiología humana(2)
Programación informática, programas, datos, seguridad(2)
Enfermedades(1)
Área de conocimiento
Aprendizaje automático(7)
Ciencias de la computación(4)
Neuropsicología(2)
Algoritmo(1)
Cáncer(1)
Characterizing ResNet Filters to Identify Positive and Negative Findings in Breast MRI Sequences
Conference ObjectAbstract: Training of deep learning models requires large and properly labeled datasets, which make unfeasiblePalabras claves:Breast Cancer, Deep feature selection, multiple kernel learning, ResNet, Transfer learningAutores:A. E. Castro-Ospina, Díaz G.M., Hernández M.L., Marín-Castrillón D.M., Osorno-Castillo K.Fuentes:scopusAnalysis of motor imaginary BCI within multi-environment scenarios using a mixture of classifiers
Conference ObjectAbstract: Brain-computer interface (BCI) is a system that provides communication between human beings and machPalabras claves:Brain-Computer Interface, ENVIRONMENTS, Mixture of classifiers, Signal processingAutores:A. E. Castro-Ospina, Diego Hernán Peluffo-Ordóñez, Marín-Castrillón D.M., Miguel A. Becerra, Moreno-Revelo M.Y., Ortega-Adarme M.Fuentes:scopusFusion of 3D Radiomic Features from Multiparametric Magnetic Resonance Images for Breast Cancer Risk Classification
Conference ObjectAbstract: Radiomics imaging technology refers to the computation of a large number of quantitative features toPalabras claves:Breast Cancer, Fusion strategies, MRI sequences, RadiomicsAutores:A. E. Castro-Ospina, Díaz G.M., Hernández M.L., Marín-Castrillón D.M., Rincón J.S.Fuentes:scopusExploration of characterization and classification techniques for movement identification from EMG signals: Preliminary results
Conference ObjectAbstract: Today, human-computer interfaces are increasingly more often used and become necessary for human daiPalabras claves:classification, EMG signals, Movements selection, WaveletAutores:A. E. Castro-Ospina, Diego Hernán Peluffo-Ordóñez, Javier E. Revelo-Fuelagán, Laura Daniela Lasso-Arciniegas, Miguel A. Becerra, Salazar-Castro J.A., Viveros-Melo A.Fuentes:scopusFeature group selection using mkl penalized with ℓ<inf>1</inf> -norm and svm as base learner
Conference ObjectAbstract: Objective feature selection is an important component in the machine learning framework, which has aPalabras claves:feature selection, Group LASSO, Multimodality, multiple kernel learning, sparsityAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Díaz G.M.Fuentes:scopusTwo novel clustering performance measures based on coherence and relative assignments of clusters
Conference ObjectAbstract: This work proposes two novel alternatives for dealing with the highly important issue of the clusterPalabras claves:Cluster coherence, Clustering, Graph-partitioning, probabilities, Relative frequenciesAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Diego Hernán Peluffo-Ordóñez, Miguel A. Becerra, Paul D. Rosero-Montalvo, Rodríguez-Sotelo J.L.Fuentes:scopusVoice pathology detection using artificial neural networks and support vector machines powered by a multicriteria optimization algorithm
Conference ObjectAbstract: Computer-aided diagnosis (CAD) systems have allowed to enhance the performance of conventional, mediPalabras claves:classification, Computer-aided diagnosis, Optimization, Voice pathologyAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Diego Hernán Peluffo-OrdóñezFuentes:scopusOdor pleasantness classification from electroencephalographic signals and emotional states
Conference ObjectAbstract: Odor identification refers to the capability of the olfactory sense for discerning odors. The interePalabras claves:Electroencephalographic signal, Emotion, Odor pleasantness, Sensorial stimuli, Signal processingAutores:A. E. Castro-Ospina, Diego Hernán Peluffo-Ordóñez, Londoño-Delgado E., Marín-Castrillón D.M., Miguel A. Becerra, Pelaez-Becerra S.M., Serna-Guarin L.Fuentes:scopusMachine learning methods for classifying mammographic regions using the wavelet transform and radiomic texture features
Conference ObjectAbstract: Automatic detection and classification of lesions in mammography remains one of the most important aPalabras claves:Breast Cancer, Machine learning methods, Radiomics, ROI classificationAutores:A. E. Castro-Ospina, Díaz G.M., Fabián R. Narváez, Rincón J.S.Fuentes:googlescopus