Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Astronomy and Astrophysics(1)
IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019(1)
IFAC-PapersOnLine(1)
Área temáticas
Métodos informáticos especiales(2)
Probabilidades y matemática aplicada(2)
Astronomía y ciencias afines(1)
Física(1)
Física aplicada(1)
Área de conocimiento
Optimización matemática(3)
Aprendizaje automático(2)
Estadísticas(2)
Espectroscopia astronómica(1)
Modelo estadístico(1)
Objetivos de Desarrollo Sostenible
ODS 17: Alianzas para lograr los objetivos(4)
ODS 9: Industria, innovación e infraestructura(4)
Origen
scopus(4)
Empirical Bayes estimation utilizing finite Gaussian Mixture Models
Conference ObjectAbstract: In this paper we develop an identification algorithm to obtain an estimation of the prior distributiPalabras claves:Bayesian inference, Empirical Bayes, ExpectationMaximization, Gaussian Mixture, Prior distributionAutores:Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopusA method to deconvolve stellar rotational velocities III. The probability distribution function via maximum likelihood utilizing finite distribution mixtures
ArticleAbstract: Aims. The study of accurate methods to estimate the distribution of stellar rotational velocities isPalabras claves:Methods: analytical, methods: data analysis, methods: numerical, Methods: statistical, Stars: fundamental parameters, Stars: rotationAutores:Carvajal R., Christen A., Curé M., Escarate P., Juan C. Agüero, Orellana R.Fuentes:scopusMaximum Likelihood Infinite Mixture Distribution Estimation Utilizing Finite Gaussian Mixtures<sup>⁎</sup>
Conference ObjectAbstract: In this paper we develop a Maximum Likelihood estimation algorithm for the estimation of infinite miPalabras claves:Estimation, Expectation-maximization, Gaussian Mixture, Maximum likelihood, OptimizationAutores:Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopusModel error modelling using a stochastic embedding approach with gaussian mixture models for FIR systems
Conference ObjectAbstract: In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochasticPalabras claves:Estimation, Expectation-maximization, Gaussian Mixture, Maximum likelihood, Model errors, Stochastic embeddingAutores:Carvajal R., Goodwin G.C., Juan C. Agüero, Orellana R.Fuentes:scopus