Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019(2)
Astronomy and Astrophysics(1)
IEEE Latin America Transactions(1)
Área temáticas
Física aplicada(2)
Astronomía y ciencias afines(1)
Física(1)
Matemáticas(1)
Otras ramas de la ingeniería(1)
Área de conocimiento
Optimización matemática(3)
Aprendizaje automático(1)
Espectroscopia astronómica(1)
Estadísticas(1)
Inferencia estadística(1)
Origen
scopus(4)
A Sliding Mode Control Strategy for Cascade Systems
ArticleAbstract: In this paper we propose a sliding mode control strategy for cascade systems. Models of first and sePalabras claves:Cascade system, Optimization, sliding mode controlAutores:Coronel M., Juan C. Agüero, Mora L., Orellana R., Ruben RojasFuentes:scopusA method to deconvolve stellar rotational velocities III. The probability distribution function via maximum likelihood utilizing finite distribution mixtures
ArticleAbstract: Aims. The study of accurate methods to estimate the distribution of stellar rotational velocities isPalabras claves:Methods: analytical, methods: data analysis, methods: numerical, Methods: statistical, Stars: fundamental parameters, Stars: rotationAutores:Carvajal R., Christen A., Curé M., Escarate P., Juan C. Agüero, Orellana R.Fuentes:scopusEmpirical Bayes estimation utilizing finite Gaussian Mixture Models
Conference ObjectAbstract: In this paper we develop an identification algorithm to obtain an estimation of the prior distributiPalabras claves:Bayesian inference, Empirical Bayes, ExpectationMaximization, Gaussian Mixture, Prior distributionAutores:Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopusMaximum Likelihood identification for Linear Dynamic Systems with finite Gaussian mixture noise distribution
Conference ObjectAbstract: This paper considers the identification of a linear dynamic system driven by a non-Gaussian noise diPalabras claves:Gaussian Mixture Model, Linear Dynamical Systems, Maximum likelihood, Non-Gaussian Noise DistributionAutores:Bittner G., Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopus