Mostrando 10 resultados de: 14
Filtros aplicados
Publisher
Proceedings of the International Conference on Document Analysis and Recognition, ICDAR(3)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(2)
Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018(2)
ICMR 2019 - Proceedings of the 2019 ACM International Conference on Multimedia Retrieval(1)
Pattern Recognition(1)
Área temáticas
Métodos informáticos especiales(9)
Funcionamiento de bibliotecas y archivos(5)
Ciencias de la computación(3)
Biblioteconomía y Documentación informatica(2)
Imprenta y actividades conexas(2)
Área de conocimiento
Ciencias de la computación(10)
Visión por computadora(9)
Aprendizaje automático(3)
Comunicación(1)
Idioma(1)
ICDAR 2019 competition on scene text visual question answering
Conference ObjectAbstract: This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (STPalabras claves:Scene text, Scene understanding, Vision and language, Visual question answeringAutores:Furkan Biten A., Jawahar C.V., Karatzas D., Lluís Álvarez Gómez, Mafla A., Mathew M., Rusiñol M., Tito R., Valveny E.Fuentes:scopusCutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters
Conference ObjectAbstract: In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architPalabras claves:cnn, End-to-end Systems, Robust reading, Utility MetersAutores:Karatzas D., Lluís Álvarez Gómez, Rusiñol M.Fuentes:scopusDynamic lexicon generation for natural scene images
Conference ObjectAbstract: Many scene text understanding methods approach the endto-end recognition problem from a word-spottinPalabras claves:cnn, Lexicon generation, Photo OCR, Scene text, Scene understanding, Topic modelingAutores:Karatzas D., Lluís Álvarez Gómez, Patel Y., Rusiñol M.Fuentes:scopusGood news, everyone! context driven entity-aware captioning for news images
Conference ObjectAbstract: Current image captioning systems perform at a merely descriptive level, essentially enumerating thePalabras claves:Document Analysis, Vision + LanguageAutores:Furkan Biten A., Karatzas D., Lluís Álvarez Gómez, Rusiñol M.Fuentes:scopusLSDE: Levenshtein Space Deep Embedding for Query-by-String Word Spotting
Conference ObjectAbstract: In this paper we present the LSDE string representation and its application to handwritten word spotPalabras claves:CNNs, Deep embeddings, Handwritten Keyword Spotting, Query by stringAutores:Karatzas D., Lluís Álvarez Gómez, Rusiñol M.Fuentes:scopusThe robust reading competition annotation and evaluation platform
Conference ObjectAbstract: The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has becomePalabras claves:data annotation, ground truthing, ONLINE PLATFORM, Performance evaluation, Robust readingAutores:Karatzas D., Lluís Álvarez Gómez, Nicolaou A., Rusiñol M.Fuentes:scopusScene text visual question answering
Conference ObjectAbstract: Current visual question answering datasets do not consider the rich semantic information conveyed byPalabras claves:Autores:Furkan Biten A., Jawahar C.V., Karatzas D., Lluís Álvarez Gómez, Mafla A., Rusiñol M., Tito R., Valveny E.Fuentes:scopusSelective style transfer for text
Conference ObjectAbstract: This paper explores the possibilities of image style transfer applied to text maintaining the originPalabras claves:data augmentation, Scene text detection, Style transfer, Text style transferAutores:Furkan Biten A., Gibert J., Gómez R., Karatzas D., Lluís Álvarez Gómez, Rusiñol M.Fuentes:scopusSelf-supervised learning of visual features through embedding images into text topic spaces
Conference ObjectAbstract: End-to-end training from scratch of current deep architectures for new computer vision problems woulPalabras claves:Autores:Jawahar C.V., Karatzas D., Lluís Álvarez Gómez, Patel Y., Rusiñol M.Fuentes:scopusSelf-supervised visual representations for cross-modal retrieval
Conference ObjectAbstract: Cross-modal retrieval methods have been significantly improved in last years with the use of deep nePalabras claves:Cross-modal retrieval, Self-supervised learning, Visual representationsAutores:Jawahar C.V., Karatzas D., Lluís Álvarez Gómez, Patel Y., Rusiñol M.Fuentes:scopus