Mostrando 10 resultados de: 14
Filtros aplicados
Publisher
Communications in Computer and Information Science(7)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(2)
Progress in Biomedical Optics and Imaging - Proceedings of SPIE(2)
Expert Systems with Applications(1)
Proceedings of SPIE - The International Society for Optical Engineering(1)
Área temáticas
Enfermedades(6)
Funcionamiento de bibliotecas y archivos(5)
Farmacología y terapéutica(4)
Fisiología humana(3)
Física aplicada(2)
Área de conocimiento
Aprendizaje automático(6)
Ciencias de la computación(5)
Laboratorio médico(4)
Algoritmo(2)
Cáncer(1)
Origen
google(6)
Characterizing ResNet Filters to Identify Positive and Negative Findings in Breast MRI Sequences
Conference ObjectAbstract: Training of deep learning models requires large and properly labeled datasets, which make unfeasiblePalabras claves:Breast Cancer, Deep feature selection, multiple kernel learning, ResNet, Transfer learningAutores:A. E. Castro-Ospina, Díaz G.M., Hernández M.L., Marín-Castrillón D.M., Osorno-Castillo K.Fuentes:scopusAutomatic BI-RADS description of mammographic masses
Conference ObjectAbstract: This paper presents a CBIR (Content Based Information Retrieval) framework for automatic descriptionPalabras claves:Automatic annotation, BI-RADS, Computer Aided Diagnosis, Content-based Image RetrievalAutores:Díaz G.M., Fabián R. Narváez, Romero E.Fuentes:googlescopusAutomatic Identification of COVID-19 in Chest X-Ray Images Based on Deep Features and Machine Learning Models
Conference ObjectAbstract: In 2020, the novel coronavirus (COVID-19), spread around the world and became a pandemic. It is diagPalabras claves:covid-19, deep learning, Machine learningAutores:Díaz G.M., Fabián R. Narváez, Fonnegra R.D.Fuentes:googlescopusBreast Lesion Discrimination Using Saliency Features from MRI Sequences and MKL-Based Classification
Conference ObjectAbstract: Breast MRI interpretation requires that radiologists examine several images, depending on the acquisPalabras claves:Breast MRI, GBVS, Machine learning, MKL, Visual saliencyAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Díaz G.M., Duarte-Salazar C.a., Hernández M.L.Fuentes:scopusAn automatic BI-RADS description of mammographic masses by fusing multiresolution features
ArticleAbstract: Correct mammography evaluation demands great expertise and rigorous interpretation of some radiograpPalabras claves:BI-RADS mammographic lexicon, Curvelet transform, Mammographic mass description, multiple kernel learning, Zernike momentsAutores:Díaz G.M., Fabián R. Narváez, Poveda C., Romero E.Fuentes:googlescopusA content-based retrieval of mammographic masses using the curvelet descriptor
Conference ObjectAbstract: Computer-aided diagnosis (CAD) that uses content based image retrieval (CBIR) strategies has becamePalabras claves:BI-RADS, Breast mass, Computer Aided Diagnosis, Content-based Image RetrievalAutores:Díaz G.M., Fabián R. Narváez, Gómez F., Romero E.Fuentes:googlescopusA novel method for objective selection of information sources using multi-kernel SVM and local scaling
ArticleAbstract: Advancement on computer and sensing technologies has generated exponential growth in the data availaPalabras claves:Machine learning, Multimodality, multiple kernel learning, Source selection, SUPPORT VECTOR MACHINESAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Díaz G.M., Hernández M.L.Fuentes:scopusFusion of 3D Radiomic Features from Multiparametric Magnetic Resonance Images for Breast Cancer Risk Classification
Conference ObjectAbstract: Radiomics imaging technology refers to the computation of a large number of quantitative features toPalabras claves:Breast Cancer, Fusion strategies, MRI sequences, RadiomicsAutores:A. E. Castro-Ospina, Díaz G.M., Hernández M.L., Marín-Castrillón D.M., Rincón J.S.Fuentes:scopusFeature group selection using mkl penalized with ℓ<inf>1</inf> -norm and svm as base learner
Conference ObjectAbstract: Objective feature selection is an important component in the machine learning framework, which has aPalabras claves:feature selection, Group LASSO, Multimodality, multiple kernel learning, sparsityAutores:A. E. Castro-Ospina, Areiza-Laverde H.J., Díaz G.M.Fuentes:scopusMulti-view information fusion for automatic BI-RADS description of mammographic masses
Conference ObjectAbstract: Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) idePalabras claves:Automatic annotation, BI-RADS, Breast Cancer, Computer Aided Diagnosis Systems, Content-based Image Retrieval, Information Fusion, Mammography, Multi-View AnalysisAutores:Díaz G.M., Fabián R. Narváez, Romero E.Fuentes:googlescopus