Current and future multimodal learning analytics data challenges
Abstract:
Multimodal Learning Analytics (MMLA) captures, integrates and analyzes learning traces from different sources in order to obtain a more holistic understanding of the learning process, wherever it happens. MMLA leverages the increasingly widespread availability of diverse sensors, highfrequency data collection technologies and sophisticated machine learning and artificial intelligence techniques. The aim of this workshop is twofold: first, to expose participants to, and develop, different multimodal datasets that reflect how MMLA can bring new insights and opportunities to investigate complex learning processes and environments; second, to collaboratively identify a set of grand challenges for further MMLA research, built upon the foundations of previous workshops on the topic.
Año de publicación:
2017
Keywords:
- Datasets
- Multimodal learning analytics
- Challenges
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis de datos
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos