In vitro inhibition of starch digestive enzymes by ultrasound-assisted extracted polyphenols from Ascophyllum nodosum seaweeds
Abstract:
Abstract: Seaweeds are gaining importance due to their antidiabetic characteristics. This study investigated the inhibitory effects of aqueous Ascophyllum nodosum extracts, obtained by ultrasound-assisted extraction with different sonication powers (70–90 W/cm2) and subjected to resin purification, against α-amylase and α-glucosidase enzymes. Different inhibition methodologies were carried out, preincubating the extract either with the enzyme or the substrate. Chemical characterization, in terms of proximate analysis, antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate [DPPH] and FRAP), and polyphenols characteristics (reversed-phase high-performance liquid chromatography [RP-HPLC] and 1H-NMR) were carried out to explain inhibitory activities of extracts. Sonication power did not influence the proximal composition nor antiradical activity of extracts, but increasing sonication power increased inhibition capacity (>15%) against both starch digestive enzymes. The extract purification largely improved the inhibition efficiency decreasing the IC50 of α-amylase and α-glucosidase by 3.0 and 6.1 times, respectively. Seaweed extracts showed greater inhibition effect when they were preincubated with the enzyme instead of the substrate. RP-HPLC together with 1H-NMR spectra allowed relating the presence of uronic acids–polyphenols complexes and quinones in the extracts with the different inhibitory capacities of samples. Practical Application: The study confirms that ultrasound-assisted extracts from Ascophyllum nodosum can be used to inhibit digestive enzymes. This opens the alternative to be used in foods for modulating glycemic index.
Año de publicación:
2022
Keywords:
- 1 H-NMR
- HPLC
- α-amylase
- Wheat
- gelled starch
- α-Glucosidase
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Bioquímica
- Bioquímica
Áreas temáticas:
- Tecnología alimentaria